The Next-to-MSSM, the LHC, and Dark Matter

Sebastian Baum

Oskar Klein Centre for Cosmoparticle Physics Stockholm University

Advances in theoretical cosmology in light of data July 3-28 2017 Nordita, Stockholm

Why (low-scale) SUSY?

SM Problems

- EW hierarchy problem
- Dark matter
- Dark energy
- Baryon asymmetry
- Strong CP-problem
- Neutrino masses
- Higgs stability

• ...

Why (low-scale) SUSY?

- EW hierarchy problem
- Dark matter
- Dark energy
- Baryon asymmetry
- Strong CP-problem (Still need axions...)
- Neutrino masses
- Higgs stability

• ...

SUSY particles

Sebastian Baum Nordita, 13 July 2017

Why Next-to-MSSM?

The Minimal Supersymmetric SM

Credit: M. Kocic

Spin-1 Spin-1/2 Vector Adj. repr. Superfield Vector superfield (in Wess-Zumino gauge) Aux. supermultiplets (gauge bosons) (gauginos) B_{μ} , B-boson $V_{\rm Y} \equiv \theta \, \sigma^{\mu} \, \bar{\theta} \, B_{\mu} + \theta \theta \, \bar{\theta} \bar{\lambda}_{\rm Y} + \bar{\theta} \bar{\theta} \, \theta \lambda_{\rm Y} + \frac{1}{2} \theta \theta \, \bar{\theta} \bar{\theta} \, D_{\rm Y}$ $U(1)_{Y}$ $V_{\rm Y}$ 1,1,0 $\lambda_{\rm v} \equiv \widetilde{B}$, bino $D_{\rm v}$ Gauge fields W_{μ}^{i} , W-bosons $V_{\rm L}^i \equiv \theta \, \sigma^\mu \, \bar{\theta} \, W_\mu^i + \theta \theta \, \bar{\theta} \bar{\lambda}_{\rm L}^i + \bar{\theta} \bar{\theta} \, \theta \lambda_{\rm L}^i + \frac{1}{2} \theta \theta \, \bar{\theta} \bar{\theta} \, D_{\rm L}^i$ $V_{\scriptscriptstyle \rm L}^i$ 1.3.0 $\lambda_L^i \equiv \widetilde{W}^i$, winos $D_{\scriptscriptstyle
m I}^i$ $SU(2)_L$ SU(3)c $\bar{\theta} D_{c}^{a}$ $W_{\text{MSSM}} = h_u \widehat{H}_u \cdot \widehat{Q} \,\widehat{U}_R^c + h_d \widehat{H}_d \cdot \widehat{Q} \,\widehat{D}_R^c +$ Chiral $\theta \sigma^{\mu} \bar{\theta}$ supermultiplets $+ h_e \widehat{H}_d \cdot \widehat{L} \, \widehat{E}_B^c + \mu \widehat{H}_u \cdot \widehat{H}_d$ quarks. s(calar) U_I (\bar{u}_I) $\bar{u}_{L} = (u_{R})^{c}, \chi_{\bar{u}}$ $\bar{u} = U_1 = \phi_{\bar{u}} + \sqrt{2 \theta \chi_{\bar{u}}} + \theta \theta F_{\bar{u}}$ $3, 1, -\frac{2}{3}$ $\bar{u}_{\mathsf{L}}, \, \phi_{\bar{u}}$ $F_{\bar{u}}$ quarks Matter fields $D_I(\bar{d}_I)$ Tree level SM-like Higgs mass L_I leptons, $m_h^2 \approx m_Z^2 \cos^2(2\beta) \lesssim (90 \,\text{GeV})^2$ s(calar) leptons $E_I(\bar{e}_I)$ $\begin{pmatrix} F_{H_u}^+ \\ F_{H_u}^0 \end{pmatrix}$ $\begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$ $H_u = \begin{pmatrix} H_u^+ + \sqrt{2} \theta \tilde{H}_u^+ + \theta \theta F_{H_u}^+ \\ H^0 + \sqrt{2} \theta \tilde{H}^0 + \theta \theta F_u^0 \end{pmatrix}$ H_u $1, 2, +\frac{1}{2}$ Higgs fields higgsinos, higgs $H_d = \begin{pmatrix} H_d^0 + \sqrt{2} \theta \widetilde{H}_d^0 + \theta \theta F_{H_d}^+ \\ H_-^- + \sqrt{2} \theta \widetilde{H}_-^+ + \theta \theta F_{H_d}^0 \end{pmatrix}$ $1, 2, -\frac{1}{2}$ H_d

Why Next-to-MSSM?

MSSM particle content + chiral superfield uncharged under SM

$$W \supset \lambda \widehat{S} \, \widehat{H}_u \cdot \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$$
 (Scale-invariant NMSSM)

SUSY breaking can generate a vev for the Singlet, solving the $\mu\text{-problem}$: $\mu=\lambda\left\langle s\right\rangle /\sqrt{2}$

Extra contribution to the tree-level mass of the SM-like Higgs:

$$m_{h_{\rm SM}}^2 \approx m_Z^2 c_{2\beta}^2 + \frac{1}{2} \lambda^2 v^2 s_{2\beta}^2$$

NMSSM Higgs sector

- Three neutral CP-even Higgses
- Two neutral CP-odd Higgses
- 1 charged Higgs

$$H_u^R, H_d^R, H^S$$

 A^{NSM}, A^S
 H^{\pm}

Behavior controlled by $p_i = \{\lambda, \kappa, \tan \beta, \mu, A_\lambda, A_\kappa\}.$

NMSSM Neutralino sector

- Wino -- mass ~ M₂
- Bino -- mass ~ M₁
- 2 Higgsinos -- mass ~ -μ
- Singlino -- mass ~ 2κμ/λ

MSSM neutralino sector

New in NMSSM

SM Higgs boson measurements

The NMSSM better have a 125 GeV Higgs with couplings ≤ 10 % away from SM

Sebastian Baum Nordita, 13 July 2017

Alignment conditions: I)

$$\lambda^2 = \frac{m_{h_{\rm SM}}^2 - m_Z^2 \cos(2\beta)}{v^2 \sin^2 \beta} = (0.6 \dots 0.7)^2$$

II)
$$\frac{M_A^2}{\mu^2} = \frac{4}{s_{2\beta}^2} \left(1 - \frac{\kappa}{2\lambda} s_{2\beta} \right) \text{ where } M_A^2 = \frac{2\mu \left(A_\lambda + \kappa \mu / \lambda \right)}{\sin 2\beta}$$

SB, Freese, Shakya, Shah 1703.07800

Heavier Higgs spectrum ≤ 3 TeV

Lighter Higgs spectrum ≤ 1 TeV

The SM-like Higgs and Alignment

Carena+ 1510.09137

Alignment conditions: I)
$$\lambda^2 = \frac{m_{h_{\rm SM}}^2 - m_Z^2 \cos(2\beta)}{v^2 \sin^2 \beta} = (0.6 \dots 0.7)^2$$

II)
$$\frac{M_A^2}{\mu^2} = \frac{4}{s_{2\beta}^2} \left(1 - \frac{\kappa}{2\lambda} s_{2\beta} \right) \text{ where } M_A^2 = \frac{2\mu \left(A_\lambda + \kappa \mu / \lambda \right)}{\sin 2\beta}$$

$$M_A^2 = \frac{2\mu \left(A_\lambda + \kappa \mu / \lambda\right)}{\sin 2\beta}$$

Same value which gives

$$m_{h_{\rm SM}}^2 \approx m_Z^2 c_{2\beta}^2 + \frac{1}{2} \lambda^2 v^2 s_{2\beta}^2 \sim (125 \,\text{GeV})^2$$

at tree level, for moderate tan $\beta \leq 5!$

Approximately fixes 2 parameters

$$p_i = \{\chi, \kappa, \tan \beta, \mu, A_{\lambda}, A_{\kappa}\}.$$

Conventional vs NMSSM specific Higgs searches

MSSM-like searches

- H/A → bb / tt / тт
- H → γγ / ZZ / WW
- $H \rightarrow h_{SM}h_{SM}$
- $A \rightarrow Z h_{SM}$

NMSSM-specific strategies:

Dominant decay modes

- $gg \to H_3 \to h_{\rm SM}h_i$
- $gg \to A_2 \to h_{\rm SM}A_1$

- $gg \to H_3 \to ZA_1$
- $gg \to A_2 \to Zh_i$

Conventional vs NMSSM specific Higgs searches

 $+ BR(A_2 \rightarrow Zh_{SM}) + BR(A_2 \rightarrow \gamma\gamma).$

NMSSM specific Higgs searches

Dominant decay modes

- $gg \to H_3 \to h_{\rm SM}h_i$
- $gg \rightarrow A_2 \rightarrow h_{\rm SM}A_1$

- $gg \rightarrow H_3 \rightarrow ZA_1$
- $gg \to A_2 \to Zh_i$

h_i/A₁ decay modes determined by mass spectrum:

- if kinematically accessible, $h_i/A_1 \to \chi_1 \chi_1$ usually sizeable
- → Mono-Higgs and Mono-Z signatures!

Mono-Higgs

Most promising channel:

- production xSec ggA₂~2 ggH₃
- Hard MET from back-to-back decays and large

$$\Delta m = m_{\Phi_2} - (m_{\Phi_1} + m_{h_{\rm SM}})$$

Mono-Higgs

Combined reach of all mono-H channels:

- Hard MET spectrum requires large m_{A_2}
- ggA₂/H₃ suppressed for too heavy Higgses
- Most promising points lie in low tan β , $m_{A_2}>2m_t$ region usually overwhelmed by $A_2\to t\bar t$

Sebastian Baum Nordita, 13 July 2017

Dark Matter in the NMSSM

Singlino plays important role to get acceptable DM

→different pheno from MSSM!

- $(\widetilde{H}_u + \widetilde{H}_d) + \widetilde{S}$ \widetilde{S} \widetilde{B} $\widetilde{B} + (\widetilde{H}_u + \widetilde{H}_d)$ $\widetilde{B} + (\widetilde{H}_u + \widetilde{H}_d) + \widetilde{S}$ $\widetilde{B} + \widetilde{S}$
- - $\Omega h^2 = 0.12 \pm 50 \,\%$

Direct Detection & Blind Spots

SB, Carena, Shah, Wagner; in preparation

Blind-spot condition for Higgsino-singlino DM

Cheung, Papucci, Sandford, Shah, Zurek 1406.6372

Badziak, Okechowski, Szczerbiak 1512.02471

Normalized to Xenon1T

[1705.06655] and including PICO-60 [1702.07666]

•
$$(\widetilde{H}_u + \widetilde{H}_d) + \widetilde{S}$$

 $\widetilde{B} + (\widetilde{H}_u + \widetilde{H}_d)$

 $\widetilde{B} + (\widetilde{H}_u + \widetilde{H}_d) + \widetilde{S}$

Including correct relic density

Conclusions

- NMSSM motivated by μ-problem and 125 GeV Higgs
- presence of 125 GeV SM-like Higgs constraints NMSSM parameter space:
 - \circ Alignment without decoupling: $\lambda \sim 0.65$, light Higgsinos/neutralinos, light Higgs spectrum
- mono-Higgs and mono-Z are clean and powerful probe, probing the low tan β , large $m_{A_2}>2m_t$ region, which is usually overwhelmed by $t\bar{t}$
- Provides good DM candidate, direct detection limits evaded by cancellations ("Blind Spots")?
- Additional scalar gives room for strong 1st order phase transition...

19

Sebastian Baum Nordita, 13 July 2017

Sebastian Baum Nordita, 13 July 2017

Extra Slides

NMSSM scalar potential

MSSM particle content + chiral superfield uncharged under SM

$$W \supset \lambda \widehat{S} \, \widehat{H}_u \cdot \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$$

Setup: Scale-invariant NMSSM.

Effective parameter: $\mu = \lambda \langle s \rangle / \sqrt{2}$

$$V = m_u^2 |H_u|^2 + m_d^2 |H_d|^2 + m_S^2 |S|^2 +$$

$$+ \lambda^2 |S|^2 (|H_u|^2 + |H_d|^2) + |\kappa S^2 - \lambda H_u H_d|^2 +$$

$$+ \left(\frac{\kappa}{3} A_{\kappa} S^3 - \lambda A_{\lambda} S H_u H_d + \text{h.c.}\right)$$

$$+ \frac{g_1^2 + g_2^2}{8} (|H_u|^2 - |H_d|^2)^2 +$$

Higgs Basis

Rotate CP-even neutral Higgses to basis where

$$\left\langle H^{\text{SM}} \right\rangle = v, \quad \left\langle H^{NSM} \right\rangle = 0$$

$$\left(\begin{matrix} H^{\text{SM}} \\ H^{\text{NSM}} \\ S^R \end{matrix} \right) = \left(\begin{matrix} \cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{matrix} \right) \left(\begin{matrix} H_d^R \\ H_u^R \\ S^R \end{matrix} \right)$$

In this basis, the couplings to Standard Model particles are

$$H^{\mathrm{NSM}}(\mathrm{down},\mathrm{up},\mathrm{V}) = \left(g_{\mathrm{SM}}\tan\beta,\,\frac{g_{\mathrm{SM}}}{\tan\beta},\,0\right)$$
 No coupling to gauge bosons

$$H^{SM}(down, up, V) = (g_{SM}, g_{SM}, g_{SM})$$

SM-like Higgs couplings

$$H^S(\text{down}, \text{up}, \text{V}) = (0, 0, 0)$$

No coupling to SM particles

CP-even Higgs mass matrix

$$M_A^2 = \frac{2\mu \left(A_\lambda + \kappa \mu / \lambda\right)}{\sin 2\beta} \ _$$

$$\mathcal{M}_{S}^{2} = \begin{pmatrix} m_{Z}^{2}c_{2\beta}^{2} + \frac{1}{2}\lambda^{2}v^{2}s_{2\beta}^{2} & -\left(m_{Z}^{2} - \frac{1}{2}\lambda^{2}v^{2}\right)s_{2\beta}c_{2\beta} & \sqrt{2}\lambda v\mu\left(1 - \frac{M_{A}^{2}}{4\mu^{2}}s_{2\beta}^{2} - \frac{\kappa}{2\lambda}s_{2\beta}\right) \\ M_{A}^{2} + \left(m_{Z}^{2} - \frac{1}{2}\lambda^{2}v^{2}\right)s_{2\beta}^{2} & -\frac{1}{\sqrt{2}}\lambda v\mu c_{2\beta}\left(\frac{M_{A}^{2}}{2\mu^{2}}s_{2\beta} + \frac{\kappa}{\lambda}\right) \\ & \frac{1}{4}\lambda^{2}v^{2}s_{2\beta}\left(\frac{M_{A}^{2}}{2\mu^{2}}s_{2\beta} - \frac{\kappa}{\lambda}\right) + \frac{\kappa\mu}{\lambda}\left(A_{\kappa} + \frac{4\kappa\mu}{\lambda}\right) \end{pmatrix}$$

In Higgs Basis: $\{H^{\mathrm{SM}}, H^{\mathrm{NSM}}, S\}$

To get a SM-like Higgs, we need alignment:

$$\mathcal{M}^2_{S,12}, \mathcal{M}^2_{S,13} \ll \mathcal{M}^2_{S,11}, \mathcal{M}^2_{S,22}, \mathcal{M}^2_{S,33}$$

And mass:

$$m_{h_{\rm SM}}^2 = m_Z^2 c_{2\beta}^2 + \frac{1}{2} \lambda^2 v^2 s_{2\beta}^2 + \frac{3v^2 s_{\beta}^4 h_t^4}{8\pi^2} \left[\ln\left(\frac{M_S^2}{m_t^2}\right) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2}\right) \right] = 125 \,\text{GeV}$$

CP-odd Higgs & Neutralino mass matrix

Basis: $\{A^{\mathrm{NSM}}, A^S\}$

$$\mathcal{M}_{P}^{2} = \begin{pmatrix} M_{A}^{2} & \frac{1}{\sqrt{2}} \lambda v \left(\frac{M_{A}^{2}}{2\mu} s_{2\beta} - \frac{3\kappa\mu}{\lambda} \right) \\ \frac{1}{\sqrt{2}} \lambda v \left(\frac{M_{A}^{2}}{2\mu} s_{2\beta} - \frac{3\kappa\mu}{\lambda} \right) & \frac{1}{2} \lambda^{2} v^{2} s_{2\beta} \left(\frac{M_{A}^{2}}{4\mu^{2}} s_{2\beta} + \frac{3\kappa}{2\lambda} \right) - \frac{3\kappa A_{\kappa}\mu}{\lambda} \end{pmatrix}$$

Basis: $\{\widetilde{B},\widetilde{W}^3,\widetilde{H}_d^0,\widetilde{H}_u^0,\widetilde{S}\}$

Basis:
$$\{\widetilde{B},\widetilde{W}^3,\widetilde{H}_d^0,\widetilde{H}_u^0,\widetilde{S}\}$$

$$M_1 \quad 0 \quad -m_Z s_W c_\beta \quad m_Z s_W s_\beta \quad 0$$

$$M_2 \quad m_Z c_W c_\beta \quad -m_Z c_W s_\beta \quad 0$$

$$0 \quad -\mu \quad -\lambda v s_\beta$$

$$0 \quad -\lambda v c_\beta$$

$$2\kappa \mu/\lambda)$$

General picture of spectrum

- SM-like Higgs with mass ~125 GeV: h_{SM}
- Mostly-doublet like (pseudo-) scalar H (A), masses ~M_A
- Lighter mostly-singlet like (pseudo-) scalars

$$\begin{array}{lcl} m_{h_S}^2 & \simeq & \frac{\kappa\mu}{\lambda} \left(A_\kappa + \frac{4\kappa\mu}{\lambda} \right) + \frac{\lambda^2 v^2 M_A^2}{8\mu^2} s_{2\beta}^4 - \frac{1}{4} v^2 \kappa \lambda \left(1 + 2c_{2\beta}^2 \right) s_{2\beta} - \frac{1}{2} v^2 \kappa^2 \frac{\mu^2}{M_A^2} c_{2\beta}^2 \\ m_{a_S}^2 & \simeq & 3\kappa \left[\frac{3}{4} \lambda v^2 s_{2\beta} - \mu \left(\frac{A_\kappa}{\lambda} + \frac{3v^2 \kappa\mu}{2M_A^2} \right) \right] \end{array}$$

- Higgsinos with mass ~μ
- Singlino with mass ~2κμ/λ

$$M_A^2 = \frac{2\mu \left(A_\lambda + \kappa \mu / \lambda\right)}{\sin 2\beta}$$

μ controls the masses of the Higgsinos/neutralinos and of all the beyond-SM Higgses, except a_S which can be tuned with A_ν

Numerical Scan w/ NMSSMTools

SB, Freese, Shakya, Shah 1703.07800

Demand:

- Physical masses
- Physical global minimum
- Pass LEP
- Pass Tevatron
- LHC sparticle & H⁺ searches
- SM-like Higgs with mass 125 GeV and couplings compatible with LHC
- Neutralino LSP

	22, 110000, 211011, 211011 11 20101 200			
	"standard"	"light subset"		
$\tan \beta$	[1; 5]	[1;5]		
λ	[0.5; 2]	[0.5; 1]		
κ	[-1; +1]	[-0.5; +0.5]		
A_{λ}	[-1;+1] TeV	$[-0.5; +0.5] \mathrm{TeV}$		
A_{κ}	[-1;+1] TeV	$[-0.5; +0.5] \mathrm{TeV}$		
μ	[-1;+1] TeV	$[-0.5; +0.5] \mathrm{TeV}$		
M_{Q_3}	$[1;10]\mathrm{TeV}$	$[1;10]\mathrm{TeV}$		

- Stop and sbottom mixing set to zero
- Sfermion masses set to 3 TeV
- Electroweakino masses M₁=M₂=1 TeV
- Gluino mass M₃=2 TeV

Constrain NMSSM dataset with direct Higgs searches

decay channel	NMSSM Higgs	Reference	Reference
	tested	$\sqrt{s} = 8 \mathrm{TeV}$	$\sqrt{s} = 13 \mathrm{TeV}$
$H \to \tau^+ \tau^-$	h_i, H_3, A_1, A_2	46-48	[49, <u>50</u>]
$H o bar{b}$	h_1, H_3, A_1, A_2	_	51
$H o \gamma \gamma$	h_i, H_3, A_1, A_2	<u>52</u> +54	<u>55</u> +57
H o ZZ	h_1, H_3	<u>[58]</u>	<u>59</u> -65
H o WW	h_i, H_3	<u>66</u> +68	<u>[69</u> 72]
$H \to h_{\rm SM} h_{\rm SM} \to b \bar{b} \tau^+ \tau^-$	h_i, H_3	[73 <mark>-</mark> 75]	[76], [77]
$H o h_{ m SM} h_{ m SM} o b ar b \ell u_\ell \ell u_\ell$	h_i, H_3	_	[78]
$H o h_{ m SM} h_{ m SM} o b ar b b ar b$	h_i, H_3	[79, <mark>80</mark>]	81-83
$H \to h_{\rm SM} h_{\rm SM} \to b \bar b \gamma \gamma$	h_i, H_3	84, 85	86, 87
$A o Zh_{ m SM} o Zbar b$	A_1,A_2	[88], [89]	90
$A \to Zh_{\rm SM} \to Z\tau^+\tau^-$	A_1, A_2	[73, <mark>88</mark>]	
$h_{\rm SM} \to AA \to \tau^+ \tau^- \tau^+ \tau^-$	A_1, A_2	91	_
$h_{\rm SM} \to AA \to \mu^+\mu^-b\bar{b}$	A_1, A_2	91	0-0
$h_{\rm SM} \to AA \to \mu^+\mu^-\tau^+\tau^-$	A_1, A_2	91	·—
$h_{\rm SM} \to AA \to \mu^+\mu^-\mu^+\mu^-$	A_1, A_2	-	92
$A/H o Zh_i/A_1$	$A_2/H_3, h_i/A_1$	93	1—1

Couplings

Large NMSSM couplings λ and κ induce large Higgs-Higgs and Higgs-neutralino couplings

Suppressed

•
$$(H^{\rm SM}H^{\rm SM}H^{\rm NSM}) \propto \mathcal{M}_{S,12}^2 \sim 0,$$

•
$$(H^S H^{\rm SM} H^{\rm SM}) \propto \mathcal{M}_{S,13}^2 \sim 0$$
,

$$\bullet \ \left(H^{\text{NSM}}A^{\text{NSM}}A^S\right) = 0$$

Vanishing in Alignment limit

Large

- $\bullet \ \left(H^S H^{\rm SM} H^{\rm NSM}\right)$
- $(H^{SM}A^{NSM}A^S)$

Visible final states, light h_i/A₁

SB, Freese, Shakya, Shah 1703.07800

Depletion from presence of 125 GeV SM-like higgs

Visible final states, light h_i/A₁

Invisible final states - mono-Higgs/mono-Z

SB, Freese, Shakya, Shah 1703.07800

Mono-H/Mono-Z cross-sections, neutralino-topology

SB, Freese, Shakya, Shah 1703.07800

mono-Higgs reach

Background separation:

• $105 \,\mathrm{GeV} < m_{\gamma\gamma} < 160 \,\mathrm{GeV}$

•
$$S_{E_T^{\text{miss}}} \equiv E_T^{\text{miss}} / \sqrt{\sum E_T}$$

Use $h_{\rm SM} \to \gamma \gamma$ final state:

well measure objects and less background

Benchmark Points

	BP_1	BP_2	BP_3
$\tan eta$	2.17	2.16	2.24
λ	0.60	0.55	0.55
κ	-0.38	-0.33	-0.45
$A_{\lambda} [{ m GeV}]$	-554	-859	-539
$A_{\kappa} [{ m GeV}]$	-254	- 195	-497
$\mu [{ m GeV}]$	-144	-222	-123
$M_{Q_3} [{ m TeV}]$ $m_{h_{ m SM}} [{ m GeV}]$	2.55	4.46	8.48
	122	123	126
$m_{h_i} [{ m GeV}]$	157	238	77.6
$m_{H_3} [{ m GeV}]$	421	650	390
$m_{A_1} [{ m GeV}]$	184	232	295
$m_{A_2} [{ m GeV}]$	457	669	464

200 200 200	BP_1	BP_2	BP_3
$m_{\chi_1} [{ m GeV}]$	69.5	156	73.1
$m_{\chi_2} [{ m GeV}]$	158	238	139
$m_{\chi_3}[{ m GeV}]$	268	343	270
$\boxed{\mathrm{BR}(A_2 \to A_1 h_{\mathrm{SM}})}$	18 %	31 %	0.10 %
$R(A_1 \to \chi_1 \chi_1)$	99 %		69 %
$\boxed{\mathrm{BR}(H_3 \to h_i h_{\mathrm{SM}})}$	9.3%	5.0%	14%
$\boxed{ BR(h_i \to \chi_1 \chi_1)}$	98 %		
$R(A_2 \to \chi_3 \chi_1)$	0.71%	0.80 %	$\boxed{0.34\%}$
$\boxed{ BR(H_3 \to \chi_3 \chi_1)}$	0.57%	0.28%	1.1 %
$\boxed{\mathrm{BR}(\chi_3 \to \chi_1 h_{\mathrm{SM}})}$	3.2%	6.1%	11 %

Higgs topology

Optimize E_T^{miss} cut for each point

$$\bullet \ \frac{S}{\sqrt{B + \Delta^2 B^2}} > 2$$

• S > 5

Reach depends primarily on:

- m_{Φ_2} controlling the overall energy scale
- \bullet $\Delta m = m_{\Phi_2} (m_{\Phi_1} + m_{h_{\mathrm{SM}}})$ controlling the MET

Reach better than 0.1 fb maintained over most of parameter space

Neutralino topology

Optimize E_T^{miss} cut for each point 300

$$\bullet \quad \frac{S}{\sqrt{B + \Delta^2 B^2}} > 2$$

• S > 5

Reach depends primarily on:

 m_{Φ} controlling the overall energy scale

 $\bullet \Delta m_1 = m_{\Phi} - (m_{\chi_1} + m_{\chi_3})$ $\Delta m_2 = m_{\chi_3} - (m_{\chi_1} + m_{h_{\rm SM}})$ controlling the MET

Less good sensitivity since MET and SM-like Higgs not produced back to back

SB, Freese, Shakya, Shah 1703.07800 41

NMSSM Interpretation

Sebastian Baum Nordita, 13 July 2017

NMSSM Interpretation: mass splittings

Sebastian Baum Nordita, 13 July 2017