# Sample variance in the local measurements of H<sub>0</sub>

Heidi Wu (Caltech) with Dragan Huterer (U. Michigan) arXiv:1706.09723

#### $H_0^{\text{local}} = 73.24 \pm 1.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al. 2016)

#### $H_0^{CMB} = 66.93 \pm 0.62 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (*Planck* int. XLVI 2016)

#### $H_0^{\text{local}} = 73.24 \pm 1.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al. 2016)

#### $H_0^{CMB} = 66.93 \pm 0.62 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (*Planck* int. XLVI 2016)

Can we alleviate this tension by considering **local density fluctuations** and **supernova selection**?

## $H_0^{CMB} = 66.93 \pm 0.62 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (*Planck* int. XLVI. 2016)

- measuring the sound horizon scale at recombination, which constrains  $\Omega_c h^2$
- Re-analyses (*Planck* int. LI):
  - $\ell > 800$  pulls H<sub>0</sub> down
  - $\ell < 30$  pulls H<sub>0</sub> up
- Beyond 6 parameters:
  - $N_{eff}$  > 3 leads to 70.6 ± 1.0 (*Planck* 15 XIII)
  - unchanged when including running, running of the running (Obied+17)

## $H_0^{\text{local}} = 73.24 \pm 1.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al. 2016)

- Distance ladder
  - 4 distance anchors (geometry + Cepheids)
  - 19 distance calibrators (Cepheids + SNe Ia)
  - 217 SNe Ia at 0.023 < z < 0.15

## $H_0^{\text{local}} = 73.24 \pm 1.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al. 2016)

- Distance ladder
  - 4 distance anchors (geometry + Cepheids)
  - 19 distance calibrators (Cepheids + SNe Ia)
  - 217 SNe Ia at 0.023 < z < 0.15
- Re-analyses
  - Cardona et al. (2017): 73.75 ± 2.11
  - Zhang et al. (2017):  $72.5 \pm 3.1 \pm 0.77$  (blind)
  - Feeney et al. (2017): 72.72 ± 1.67
  - Follin & Knox (2017): 73.3 ± 1.7

## For now let's assume that the *Planck* H<sub>0</sub> is the true global value.

## How much $\Delta H_0^{loc}$ can come from sample variance?

Take an N-body sim

















## Dark Sky Simulations (Skillman et al. 2014)

- N-body simulations (2HOT)
- 8 h<sup>-1</sup>Gpc, divided into 512 subvolumes of 1 h<sup>-1</sup>Gpc
- resolving  $2x10^{12}$  M $_{\odot}$  halos (about Milky Way mass)

7

• on-line database (yt + darksky.slac.stanford.edu)

#### Redshift distribution 217 SNe Ia from Riess+16



8

#### Angular distribution 217 SNe Ia from Riess+16



9

#### PDF of $\Delta H_0^{loc}$ from ~1.5 million realizations



#### Sample variance of $\Delta H_0^{loc}$ is ~0.3 km s<sup>-1</sup> Mpc<sup>-1</sup>

|                                                                                   | all halos, no | SN n(z)   | +3D distr. | +∆mag     |
|-----------------------------------------------------------------------------------|---------------|-----------|------------|-----------|
|                                                                                   | weighting     | weighting | +rotations | weighting |
| σ (ΔH <sub>0</sub> <sup>loc</sup> )<br>[km s <sup>-1</sup><br>Mpc <sup>-1</sup> ] | 0.12          | 0.38      | 0.42       | 0.31      |

11

#### Evidence of a local under-density?



#### Evidence of a local under-density?

galaxy luminosity density from 2M++



#### $\Delta H_0^{loc} \propto density contrast$



14

#### Comparison with observations



15

#### Summary

- Sample variance in H<sub>0</sub><sup>loc</sup> is ~ 0.3 km s<sup>-1</sup> Mpc<sup>-1</sup>, which is too small to alleviate the tension between local (~73) and CMB (~67) measurements.
- This tension would require a 80% underdensity to alleviate, which is highly unlikely in a ΛCDM universe.

#### Summary

- Sample variance in H<sub>0</sub><sup>loc</sup> is ~ 0.3 km s<sup>-1</sup> Mpc<sup>-1</sup>, which is too small to alleviate the tension between local (~73) and CMB (~67) measurements.
- This tension would require a 80% underdensity to alleviate, which is highly unlikely in a ΛCDM universe.

We're still not sure if there is a Hubble bubble. Even if there is, it cannot resolve the tension.

#### Sample variance of H<sub>0</sub> vs. maximum distance



17