

The polarization of the CMB with Planck

and the reionization of the universe

Graca Rocha JPL, Caltech For the *Planck* team

18th July 2017

1

2015 was the Jubilaeus Annus for the discovery of the Cosmic Microwave Background. We have been enormously privileged to have seen the success of 3 satellite missions and a number of remarkable suborbital experiments dedicated to exploration of the CMB sky.

Planck 2015 full sky maps of linear polarization

CMB and Foreground Stokes Q, U Maps

PLANC

Dust Temperature and Polarization at 353 GHz

Total intensity encoded in colours

Polarization encoded in shaded striations.

Polarization orientation is at 90° from the striations, which indicate the direction of the magnetic field projected on the sky.

Nordita, July 2017

PLAN

Four Color Composite Image of the Foreground Sky

Large-scale CMB polarization

Measuring the Optical depth of reionized universe (τ) *PLANCK* with the CMB – Planck 2015

• Planck low-ell (T,P) Likelihood with all parameters but τ , A_s and n_s fixed to Planck 2015 Best Fit Model

30/70/353 polarization (low-ell) $\rightarrow \tau = 0.067 \pm 0.022$

Measuring the Optical depth of reionized universe (τ) with the CMB

- 35 • Planck 2015: Planck TT 30/70/353 polarization: 30 +lensing $\tau = 0.067 \pm 0.022$ +lensing+BAO 25 Planck TT+lowP ²robability density Planck 2015 polarization (low-ell) + Planck TT+lowP+WP + TT (high-ell) 20 *Planck* TT+lowP+BAO $\tau = 0.078 \pm 0.019$ Planck 2015 TT + lensing 15 $\tau = 0.070 \pm 0.024$ 10 + BAO $\tau = 0.067 \pm 0.016$ 5 0 • WMAP9 Hinshaw et al (2013) 0.05 0.10 0.15 0.20 $\tau = 0.089 \pm 0.014$ au• WMAP9 Dust-cleaned with Planck 353
 - Planck 2015 polarization (low-ell) + + TT (high-ell) $\rightarrow \tau = 0.078 \pm 0.019$

 $\tau = 0.075 \pm 0.013$

Planck/HFI data and large scale polarization

- In principle, lower noise level in 100, 143, 217 GHz data can improve Planck τ measurement.
- Polarization power spectra in 2015 release dominated by systematic errors at low multipoles (ell < 30)
- New effort:
 - improved understanding of large angular scale systematics in both HFI and LFI instruments -> improved maps -> improved τ measurement
 - Simulation effort to characterize systematics remaining in the data
 - New mapmaking procedure

2 papers:

Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth' <u>2016A&A...596A.107P</u> 'Planck intermediate results, YLVII, Planck constraints on reionization history'

'Planck intermediate results. XLVII. Planck constraints on reionization history' <u>2016A&A...596A.108P</u>

Nordita, July 2017

PLANC

Planck-HFI 's polarization measurement

$$m_t = I(\vec{n}) + \rho \left[Q(\vec{n}) . \cos(2\psi) + U(\vec{n}) . \sin(2\psi) \right]$$

No instrumental polarization modulation: I,Q,U solved by combining sky measurements from polarization sensitive bolometers at different angles \rightarrow differencing detector signals and by sky modulation.

Much of the sky is poorly sampled in polarization angles: vulnerable to $T \rightarrow P$ leakage

 Characterization of detector-to-detector relative properties + long time scale stability of measurement is critical for large angular scales.

Simulated systematics propagated to EE-spectra for HFI

Systematics at low ell in HFI channels dominated by ADC nonlinearity

Purely instrumental -> Analog-to-Digital Converter (ADC) nonlinearity; Time response residuals; Relative gain between detectors; Possible time-variable gain

Scan-strategy related -> Far sidelobe pickup; Zodiacal light emission; Bandpass mismatch T \rightarrow P leakage ADC nonlinearity: Can be (mostly) corrected by applying a time-variable linear gain correction. Nordita, July 2017 14 Graca Rocha

ADC nonlinearity in HFI

Nonlinearity near mid-range

Huge effort during HFI warm mission to characterize ADCs.

 \diamond Major improvements between 2013 and 2015 releases

 \diamond But some residual effects remain

Typical modulated signal level and baseline throughout mission

Simulated effects of residual ADC nonlinearity

Can be (mostly) corrected by applying a time-variable linear gain correction. However dipole signal is distorted: signal leaked from ell=1 to higher ell (affects mostly ell=2 and 3)

Simulated LFI systematics in EE spectra

Systematics at low ell are mostly dominated by

- calibration uncertainty
- far sidelobe pickup at 30 GHz

PLA

Removal of Systematic Errors

Extend data model to solve for systematic effects while also solving for I, Q, U on the sky:

$$d_{t} = \mathbf{g}_{\mathbf{r}} \left(\mathbf{I}_{\mathbf{p}} + \rho \mathbf{Q}_{\mathbf{p}} cos 2\phi_{t} + \rho \mathbf{U}_{\mathbf{p}} sin 2\phi_{t} + D_{t} + \sum_{\mathbf{f}_{i}} \mathbf{f}_{i}^{(fg)_{i}} + \sum_{\mathbf{c}_{i}} \mathbf{C}_{i} T_{t}^{(TF)_{i}} \right) + \mathbf{o}_{\mathbf{r}} + n_{t}$$
Residual dipole
Time variable gain
(mostly corrects ADC
nonlinearity)
Bandpass mismatch:
leaks foreground T
to P
Residual transfer
function templates.
Zodi templates
Destriper offset:
remove 1/f noise

PLA

Null tests: great improvement in self-consistency of maps

Foreground removal

ILC with 30 GHz for synchrotron and 353 GHz for dust

100x143 spectra

- Main results: Use 100 x 143 (foreground cleaned) Cross checks from 100 x 70 and 143 x 70, 100x100 and143x143 autospectra for crosschecks.
- Use multiple spectral estimator techniques
 - Pseudo-Cl (PCL) Lollipop
 - Quadratic Maximum Likelihood (QML)

Use instrumental simulations to compute and subtract bias due to systematics (very small), and to construct pixel-pixel noise covariance

Simulation based Likelihood - SimBal

Black lines - Model for $\tau=0.05$ (dotted), 0.07(solid) and 0.09 (dashed)

QML computed with two different simulation sets

Tau results

Instrumental cross-check: HFI x LFI

70x100 70x143

Summary of tau results

Given lower limit from astrophysics (Gunn-Peterson), $z_{re} \sim 6$, ie, $\tau \sim 0.038$ New Planck/HFI result has 95% CL upper limit $\tau < 0.072$ $z_{re} \sim 7.7$ to 8.8 (depending on the model of reionization) The Universe is jonized at²fess than the 10% level above $z \sim 10$

Nordita, July 2017

Graca Rocha

Timeline of tau results

Given lower limit from astrophysics (Gunn-Peterson), $z_{re}\sim6$, ie, $\tau \sim0.038$ New Planck/HFI result has 95% CL upper limit $\tau < 0.072$ $z_{re} \sim7.7$ to 8.8 (depending on the model of reionization) The Universe is ionized at less than the 10% level above $z \sim10$

- Impact on scalar amplitude of the spectra, A_s, and tilt, n:
 - Main degeneracy is with primordial scalar $A_s \rightarrow \sigma_8$ comes down (by 1 σ)
 - but not enough to resolve discrepancy with Planck cluster abundance measurement
 - Slight degeneracy with n_s, which shifts down slightly

Finpact on models of early galaxy evolution and star formation

Planck Collaboration: Reionization history

Left: Evolution of the ionization fraction for several functions with same τ =0.06 Green and Blue are for redshift-symmetric instantaneous (z = 0.05) and extended reionization (z = 0.7), respectively;

Red is an example of a redshift asymmetric parameterization;

Light Blue and Magenta are examples of an ionization fraction defined in redshift bins, with two bins inverted between these two examples.

Right: corresponding EE power spectra with cosmic variance in grey.

All models have the same optical depth $\tau = 0.06$ and are essentially indistinguishable at the reionization bump scale. 26 Graca Rocha

Impact on models of early galaxy evolution and star formation

redshift-symmetric parameterization Green after imposing prior z_end >6

redshift-asymmetric parameterization

Conclusions

- The Planck team has made huge improvements in understanding and cleaning of systematic errors in HFI and LFI instruments:
 - Internal consistency of maps on large angular scales is much improved
 - Improved simulations and removal of systematic effects allow detection of signature of reionization in large scale E-mode angular power spectrum.
- Reionization optical depth τ lower than previous measurements:
 - $\tau = 0.055 \pm 0.009$ based on 100x143, foreground-cleaned with 30 and 353 GHz
 - Still limited by systematics:
 - cosmic variance limited error bars over 50% of the sky: 0.006 → some room for improvement in final 2017 release or beyond..
- Two papers on:
 - Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth'
 - <u>2016A&A...596A.107P</u>
 - 'Planck intermediate results. XLVII. Planck constraints on reionization history'
 - <u>2016A&A...596A.108P:</u>