

Optimising primordial non-Gaussianity measurements from galaxy surveys Eva-Maria Mueller 19 July 2017

arXiv: 1702.05088, 1705.06373

Outline

Overview: extended BOSS survey (eBOSS)

Constraining primordial non-Gaussianity with LSS

Redshift weighting techniques

Accounting for systematics effects

eBOSS: First results

eBOSS collaboration: Ata et al. (2017)

147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS)

Good agreement with Planck LCDM

Primordial Non-Gaussianity

Simple form: Local type

$$\Phi(x) = \phi(x) + f_{NL}^{loc}(\phi^2(x) - \langle \phi^2(x) \rangle)$$

Induces scale dependent halo bias due to "mode coupling"

e.g.de Putter

Primordial non-Gaussianity from LSS

Scale dependent halo bias

$$b_{\text{total}} = b + \Delta b$$

$$\Delta b(k) \propto \frac{f_{NL}}{k^2}$$

Very sensitive at large scales

e.g. Dalal et. al 2008, Slosar et. al 2008

Constraints from LSS

Current, e.g.:

Ross et al. (2012) : SDSS DR9 BOSS data $-45 < f_{\rm NL}^{\rm local} < 195$

Giannantonio et al. (2014): Correlations between CMB lensing and large-scale structure $f_{\rm NL} = 12 \pm 21(1\sigma)$

Upcoming, e.g.:

DESI, Euclid : error on fNL ~ few

Further improvement with SPHEREx: error on fNL~1

Optimising LSS analysis

Redshift Weighting

Idea: No binning in redshift Motivation:

Fisher predictions ~20% better than actual results

Reduce edge effects due to binning

Decrease computational effort for large data sets

Splitting the survey volume decreases S/N at large scales at which non-Gaussianity has the biggest impact

FKP weights

Feldman, Kaiser, Peacock (1994)

$$w_{\rm FKP}(z) = 1/[1+n(z)P_0]$$

Inverse variance weight

$$C \propto \left(P + \frac{1}{\bar{n}}\right)^2 \frac{1}{dV}$$

Balances shot noise and cosmic variance

Improves signal to noise of 2-point statistics

"Sweet Spot": Theory vs. Statistics

Weights optimally balance statistical uncertainty and underlying redshift evolution of the theory

Redshift weights for BAO

Redshift weights improve BAO constraints

Redshift weights do NOT bias the results

Methodology

Minimise Fisher information

Mueller et al. (2017), Ruggeri et al. (2016), Zhu et al. (2014, 2016)

 $F_{ij} \equiv \left\langle \frac{\partial^2 \mathcal{L}}{\partial \theta_i \partial \theta_j} \right\rangle \quad \begin{array}{c} \mathcal{L} - \text{Likelihood} \\ \theta_i, \theta_j - \text{parameters} \end{array}$

Redshift weights:

$$\mathbf{w}^T = C^{-1} \mu_{,i}$$

Depends on the tracer

More total weight is given to galaxies at high redshifts

Redshift weighted power spectrum

$$P_{l,w}(k) \equiv \frac{1}{N_i} \int d\mathcal{W}(z) w_{l,i}(z) P_l(k,z)$$

Feldman, Kaiser & Peacock: $d\mathcal{W} \equiv C^{-1} = \left(\frac{\bar{n}}{\bar{n}P+1}\right)^2 dV$

Normalisation:

$$N_i = \int w_i \ d\mathcal{W}$$

"Sweet Spot": Theory vs. Statistics

Statistical noise on the weighted power spectrum is larger

But: It is more sensitive to f_NL, i.e more capable to constrain PNG

Measurement improvement

Improved constraints

Computationally more feasible for large data sets

30-40% improvement for eBOSS

Depends on

Redshift range

Bias evolution

- Weights are model dependent
- Loss of generality

Problem: Systematics

Systematic effects are strongly impacting large scales

eBOSS systematics: 'Attack approach'

eBOSS collaboration: Ata et al. (2017)

linear fit ~ 1/w

Systematics can have scale dependent effects on large scales

Summary

First eBOSS results are out!

Non-Gaussianity can be constrained using the scale dependent halo bias

Redshift weighting technique: Apply weights to take the underlying theory into consideration

Systematic effects need to be studied carefully for fNL measurements

Thank you!

Thank you!

Eva-Maria Mueller 19 July 2017

Work in progress...

Non-Gaussianity measurement from eBOSS

Redshift space distortion measurement from eBOSS using redshift weights (Rossana Ruggeri et. al.)

Accessing systematic effects using mode projection (Benedict Kalus et. al)