How neutrinos can kill cosmological models or Bad ν s for quintessence

Sunny Vagnozzi

The Oskar Klein Centre for Cosmoparticle Physics

Advances in theoretical cosmology in light of data Stockholm, July 2017

"What can neutrinos do for cosmology?"

Michael Turner, Advances in Theoretical Cosmology in Light of Data, week 1

Idea: neutrinos as a test of cosmological models

Idea: neutrinos as a test of cosmological models

- Choose your favourite cosmological model
- Parametrize it appropriately if needed
- Derive bounds on M_{ν} within your chosen model **imposing a lower prior** $M_{\nu} > 0 \text{ eV}$ (ignore oscillation measurements)
- Are your bounds consistent with oscillation data $(M_{\nu} > 0.06 \text{ eV})$? Gonzalez-Garcia et al. 2014; Forero et al. 2014; Esteban et al. 2016; Capozzi et al. 2016, 2017
 - **YES**: Great! Your model isn't ruled out (yet)!
 - NO: Might want to reconsider your model...

How can cosmology measure neutrino masses?

Quintessence

Single, minimally-coupled scalar ϕ , with canonical kinetic term

Ratra & Peebles 1988; Wetterich 1988; Caldwell, Dave & Steinhardt 1998

Lagrangian:

$${\cal L}_{\phi}=-rac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi-V(\phi)$$

Pressure and energy density:

$$ho_{\phi} = rac{1}{2} \dot{\phi}^2 + V(\phi) \,, \quad P_{\phi} = rac{1}{2} \dot{\phi}^2 - V(\phi)$$

Equation of state is **non-phantom**:

$$w_{\phi} = rac{rac{1}{2}\dot{\phi}^2 - V(\phi)}{rac{1}{2}\dot{\phi}^2 + V(\phi)} \geq -1$$

Quintessence

Essentially two classes of quintessence models:

Caldwell & Linder 2005; Linder 2006; Huterer & Peiris 2007

THAWING

e.g. Scherrer & Sen 2008

- ϕ frozen at early times due to Hubble friction
- ϕ starts rolling at late times when friction is subdominant
- $w \approx -1$ at early times
- w > -1 at late times
- w(z) monotonically convex decreasing function of z and non-phantom

e.g. Scherrer 2006

- ϕ rolls at early times due to steep potential
- ϕ frozen at late times due to shallower potential
- w > -1 at early times
- w pprox -1 at late times
- w(z) monotonically convex increasing function of z and non-phantom

Quintessence parametrizations

THAWING

1CPL parametrization:

Chevallier & Polarski 2001; Linder 2003

$$w(z) = w_0 + w_a \frac{z}{1+z}$$

FREEZING

7CPL parametrization:

Pantazis et al. 2016

$$w(z) = w_0 + w_a \left(\frac{z}{1+z}\right)^7$$

Dark energy density:

$$ho_q(a) =
ho_{\mathrm{DE},0} a^{-3(1+w_0+w_a)} imes e^{-3w_a(1-a)}$$

Dark energy density:

$$\rho_q(a) = \rho_{\text{DE},0} a^{-3(1+w_0+w_a)} \times e^{-3w_a (H_7 - 7a_3 F_2(1,1,-6;2,2;a))}$$

Quintessence priors

THAWING

FREEZING

1CPL parametrization:

$$w(z) = w_0 + w_a \frac{z}{1+z}$$

7CPL parametrization:

$$w(z) = w_0 + w_a \left(\frac{z}{1+z}\right)^7$$

Thawing priors:

- $w_0 > -1$
- w_a < 0

• $w_0 + w_a > -1$

Freezing priors:

- $w_0 > -1$
- w_a > 0

Data: Planck temperature and low- ℓ polarization (*PlanckTT*+*lowP*), BAO measurements (DR11 CMASS and LOWZ, 6dFGS, MGS), and supernovae luminosity distances (JLA)

THAWING

FREEZING

- $w_0 = -0.936^{+0.019}_{-0.038}$ (68% C.L.)
- $-0.037 < w_a < 0$ (95% C.L.)
- $M_{\nu} < 0.058 \, eV$ (95% C.L.)

- $-1 < w_0 < -0.969$ (95% C.L.)
- 0 < w_a < 0.567 (95% C.L.)
- $M_{\nu} < 0.063 \, eV$ (95% C.L.)

Results

THAWING

FREEZING

Physical explanation

- As w(z) > -1 and moves towards 0, the behaviour of quintessence may resemble that of matter
- Another way to see this is that there is more dark energy in the near past than for simple ACDM...
- ...so the relative energy density of matter has to decrease...
- and hence the contribution of massive neutrinos!

Physical explanation

Shift in $\Omega_m h^2$ to lower values due to having more dark energy in the past with quintessence than with Λ

Corresponding shift in M_{ν} since:

$$\Omega_m h^2 \supset \Omega_
u h^2 pprox rac{M_
u}{93\,{
m eV}}$$

Non-phantom dark energy beyond quintessence?

Assume:

- CPL parametrization: $w(z) = w_0 + w_a \frac{z}{1+z}$
- Non-phantom priors: $w_0 > -1$ and $w_0 + w_a > -1$
- Same datasets used previously

Result:

$M_{\nu} < 0.059 \, eV$ (95% C.L.)

Note: the CPL parametrization is used by essentially the whole cosmology community, including big current and future collaborations (e.g. Planck, BOSS, KiDS, etc.), as it is an excellent low-redshift parametrization of most smooth dark energy models

Conclusions

- Neutrinos can be used as a consistency check of cosmological models
- Neutrinos provide a robust tool to test dark energy models
- Quintessence models appear to need low values of M_{ν} in conflict with oscillation data ($M_{\nu} < 0.06 \, {\rm eV}$)
- Same results seem to apply to smooth non-phantom dynamical dark energy models
- Is this the end of quintessence or maybe more generally non-phantom dark energy? (let you decide)