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Probing inflation

@ Tensor modes ~ H?2
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BICEP suggests r < 0.1 =
Large r values lead to
super-Planckian field excursions

Formally, Lyth Bound:
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Models with super-Planckian field excursions = UV sensitivity!
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Probing inflation
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super-Planckian field excursions
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Models with super-Planckian field excursions = UV sensitivity!
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Axions as inflatons

Shift symmetry ¢ — ¢ + ¢ protects inflation from UV physics.

Shift symmetry makes (ending) inflation impossible, since the
potential, e.g. ¢", does not respect the symmetry.

= It has to be broken (softly).

Examples include
e Quadratic inflation: V/(¢) = Fm?¢?

e Original natural inflation: V/(¢) = u* (1 — cos(¢/f))

@ Axion monodromy: V(¢ <\/m )
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Allowed couplings

A field with a shift symmetry can only couple derivatively to other

degrees of freedom
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From a EFT perspective, these interactions must be present.

Each of them can lead to new connections to data through

magnetogenesis and leptogenesis.
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Gauge field production

We work with an abelian U(1) gauge field & decompose in two
polarizations (+, —).
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For non-zero coupling each polarization (+, —) exhibit different
exponential enhancement.
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Backreaction

Gauge fields source density fluctuations by back-reacting on the
inflaton through the usual axion-photon interaction
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Constraints on the coupling through:
op @ non-Gaussianity at the CMB

@ Primordial Black Hole production
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A ?
— Lattice simulations are needed to compute
strong back-reaction effects for large coupling
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Reheating Efficiency

Coupling the axion to gauge fields can lead to explosive transfer of
energy from the inflaton.
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Reheating occurs after a single axion oscillation for Zmp; > 45.
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Re-Scattering and Polarization
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Strong re-scattering suppresses polarization on sub-horizon
scales for large couplings.
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Inflation in the light of “other” data

Magnetic fields are observed at all scales. We focus on large scales

o Galactic magnetic fields at kpc
scales of 107G
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@ Intergalactic magnetic fields with
correlation length of A

B > 107G (or 107°G) for A > 1Mpc
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EGMF Constraints from Simultaneous GeV-TeV Observations of
Blazars
A.M. Taylor', I. Vovk' and A. Neronov'
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Lattice Results
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Photons — Charged Plasma

Instantaneous preheating efficiently generates gauge fields, but
we are not made of gauge fields...

= The "missing” link are Standard Model interactions
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Fast interactions lead to
Tieh ~ VM X mp| ~ 10_3 mpi
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Evolution of Helical Fields

In a turbulent plasma B—fields undergo inverse cascade :

@ helicity conservation
@ energy transfer from smaller to larger scales.
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Campanelli, arXiv:0705.2308

This protects magnetic fields from fast decay
= stronger magnetic fields today.

THE TURBULENT CHIRAL-MAGNETIC CASCADE IN THE EARLY UNIVERSE

AXEL BRANDENBURG"#%1 JENNIFER Q(‘IIOBER 1Gor Rogacupy ski™'?, TINA KAIINHSH\ILI , ALEXEY BOYARSKY®
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Late Universe Magnetic Field
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e Conversion of gauge fields to charged particles O(1)

@ Conversion of hypercharge to EM cos 6y, ~ 0.9

@ Inverse cascade starts shortly after inflation

B.g > 10716 G

& Bppys ~ 10736 & Apyys ~ 10pc
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Who ordered that?
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@ Strong back-reaction from the gauge-field traps the inflaton.
@ Inflation ends momentarily.

@ Once the gauge fields red-shift enough, inflation re-starts.
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Time delay formalism a la Guth & Pi

Take the case of a single scalar field. If the field has quantum
fluctuations d¢(X, t) on top of a classical trajectory ¢o(t), then
one can write

6% t) = dalt) +06(X.t) = ga(t) — I7(X)da(t)
= [6(%,1) = ga(t = 67(%)) |

Intuitively inflation ends on different times at different places.

The time delay field 67(X) is given by

and is related to the density perturbations or temperature

fluctuations ST(R 6ol
T(X) = p/()x) x 67(X)
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Inflaton trapping
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Linde, Mooij & Pajer, arXiv:1212.1693
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@ An example of “trapped inflation”

@ Black Hole production is altered
— Re-computing bounds on «a/f

— Possible PBH scenario?

Still much to be done!
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Axion inflation naturally has a Chern-Simons coupling to U(1)

Lattice simulations needed for large coupling

4

Instantaneous preheating &
efficient scattering to the SM
— high reheat temperature

4

Largely helical magnetic fields &
inverse cascade

4

Possible origin of
intergalactic magnetic fields

4

Large backreaction effects
= Inflaton trapping
can mimic potential feature

U
Possible enhanced PBH
production

4

Coupling constraints must be
updated
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Thank you!

Questions
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Baryogenesis through magnetogenesis

finite conductivity
of the primordial

plasma

helicity decay of the
hypercharge fields

I

baryon asymmetry
through the SM
chiral anomaly,
without B — L
violation

s (Baryon-to-entropy ratio)
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Axion Monodromy Potential

The potential is quadratic near the origin and “flattens out” for
larger values. This is a required condition for the formation of
oscillons
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Oscillons are long-lived field :
configurations that are localized

in space and oscillate in time.

\
our initial conditions —
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Oscillon Emergence

Oscillons have been numerically
shown to emerge after inflation
in axion monodromy models.

Amin, Easther, Finkel, Flauger,
Hertzberg, arXiv: 1106.3335
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Axion Monodromy inflation
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Inflation, Preheating & Tachyonic Resonance
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The amplification after the first tachyonic regime is (WKB):

eXk — ef\/ 7w2(t)dt
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WKB result

We calculate gauge field amplification after the first tachyonic
regime for both modes.
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We expect the final state to be strongly polarized
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Eg(t) = /0 dk&p, Ep= ()2 (AL +|A_P)
o) k3 ) )

He(t) = / dhHs, Mz =2y (1AL~ [AP)
0

Consistency relation |Hpg| < 2k—2&p

- - _ 1 [oodk
We define the correlation length £g = E fo B
leading to the integral consistency relation |Hg| < 2{gEp

We distinguish the physical quantities

B2 (1) = —Ea(t),  Apmyalt) = a(t) 27 £5(t)

a*(t)
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