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We can look into the sky 

Learn from and about our past 

• structures far away = high redshift 
• how structures formed over time 

• observe galaxies and clusters 
• they form a pattern = Cosmic Web

Clustering Statistics

Clustering pattern constrains 
cosmology & fundamental physics

• Statistics: quantify what we see 
• mainstream: N-point correlation functions 
• hipster: counts-in-cells of objects 

• Dynamics: understand gravitational clustering 
• mainstream: perturbation theory for small densities 
• hipster: spherical collapse for densities in spheres

• (G)astrophysics: determine relation between dark matter & tracers



Large scale clustering with 
counts-in-cells statistics 
Cora Uhlemann, Universiteit Utrecht

Clustering Statistics

• Observational: counts-in-cells 
• easy to count objects in regions 
• robust against late-time small scale physics 
• contain some information from all higher 

order N-point correlation functions 
• density-dependent clustering 

•  Theoretical: spherical collapse 
• nonlinear analytical solution 
• densities in spheres = spherical cows

Why you all (should) like counts-in-cells 

• What we want 

• matter in all shapes 

• spectroscopic: spheres 

• photometric: cylinders 

• [weak lensing: cones] 

• cosmology dependence 

• tracer bias & RSD 
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What is the most likely way  
to get a large density fluctuation? 

• Observable: counts-in-cells statistics in spheres 
• easy to count within data or simulations 

•  Large Deviation Theory: spherical collapse 
• dominant contribution for large deviations

CMB 
Gaussian 

Cosmic Web 
non-Gaussian

spherical

collapse

⌧1
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Clustering Statistics
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LSSFast package

Dark matter densities-in-spheres: prediction 

• simple code LSSFast: needs linear power spectrum & non-linear variance  

First step: Dark matter
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CU, Codis, Pichon ++ 2016 
Back in the saddle: …
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LSSFast package

Dark matter densities-in-spheres: prediction 

• simple code LSSFast: needs linear power spectrum & non-linear variance  
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First step: Dark matter

Dark matter densities-in-spheres: prediction vs. simulation 

• simple code LSSFast: needs linear power spectrum & non-linear variance  
• analytical prediction for regime beyond perturbation theory 
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analytical prediction 
with measured variance 

vs. Horizon Run 4

Horizon Run 4 
simulation 
J. Kim & C. Park

CU, Codis, Pichon ++ 2016 
Beyond Kaiser bias: …
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Dark matter densities-in-spheres: prediction vs. fit 

• simple code LSSFast: needs linear power spectrum & non-linear variance  
• analytical prediction for regime beyond perturbation theory 
• accuracy at the percent level for a wide range of densities 
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• significant improvement over phenomenological fits with lognormal distribution
CU, Codis, Pichon ++ 2016 
Beyond Kaiser bias: …

Horizon Run 4 simulation 
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Spheres to cylinders

working title:  
Cylinders out of a top-hat 

Dark matter densities-in-cylinders 

• for photometric surveys, d>= 50 Mpc/h 
• use 2D spherical collapse 
• long cylinders R≫d 

•Rini = Rρ1/2 
• include finite depth 

•Rini = Rρ1/3, dini = dρ1/3

4 C. Uhlemann, S. Codis, C. Pichon, F. Bernardeau et al.

z=0.7 d \R [Mpc/h] 2 3 4 5 7 10

�̂⇢ 50 0.64 0.55 0.49 0.45 0.39 0.33
�̂µ 0.49 0.45 0.42 0.40 0.36 0.32
�̂⇢ 150 0.57 0.49 0.44 0.41 0.36 0.31
�̂µ 0.45 0.41 0.39 0.36 0.33 0.29
�̂⇢ 300 0.48 0.41 0.37 0.34 0.30 0.26
�̂µ 0.39 0.36 0.33 0.31 0.28 0.25
�̂⇢ 450 0.41 0.35 0.32 0.30 0.26 0.23
�̂µ 0.35 0.32 0.29 0.28 0.25 0.22
�̂⇢ 700 0.34 0.29 0.27 0.25 0.22 0.19
�̂µ 0.30 0.27 0.25 0.23 0.21 0.18

Table 1. Variances of the cylindrical density ⇢ and log-density µ = log ⇢
for different lenghts d and radii R at redshift z = 0.7 as measured from the
HR4 simulation.

with the shifts hµki chosen such that the resulting mean densities
are one h⇢ii = 1 8i = 1, · · · , n. Furthermore, since the saddle-
point method yields only an approximation to the exact PDF, the
PDF obtained from equation (17) is not necessarily perfectly nor-
malized. In practice, this can be accounted for by considering

ˆPR({⇢k}) = PR({⇢k})/h1i , (17d)

with the shorthand notation h1i = Q
k

R1
0

d⇢k PR({⇢k}).

3 VALIDATION FOR DARK MATTER DENSITIES

3.1 Horizon Run 4 simulation

The Horizon Run 4 simulation (HR4, Kim et al. 2015) is a mas-
sive N -body simulation, evolving 6300

3 particles in a 3.15 Gpc/h
box using the GOTPM TreePM code (Dubinski et al. 2004). It
assumes a WMAP-5 cosmology, with (⌦m,⌦⇤

,⌦b, h,�8

, ns) =

(0.26, 0.74, 0.044, 0.72, 0.79, 0.96), yielding a particle mass of
9⇥ 10

9h�1 M�. The initial conditions were generated at z = 100

using the second order Lagrangian perturbation theory, which en-
sures accurate power spectrum and halo mass function at redshift 0
(L’Huillier et al. 2014).

3.2 One-point PDF

3.2.1 Single cylinders

In Figure 1 we compare the theoretical prediction for infinitely long
cylinders, hence effectively 2D-spherical densities, and finitely
long cylinders when fixing the radius R and varying the depth
d. We find that the limit of essentially infinitely long cylinders is
achieved at 10% accuracy in the PDF for a length to radius ratio of
about d/R ' 10. We can however see that the prediction using the
finitely long cylinder with a sphere-like density mapping between
initial and final radius and depth performs better for d/R = 10

while it is getting worse for significantly bigger length to radius
ratios d/R & 30.

In Figure 2 we compare the theoretical prediction for finitely
long cylinders, using the cylindric filter with a sphere-like mapping
for initial and final radius and depth for fixed depth d = 50Mpc/h
and varying radii R finding excellent agreement with the simulation
measurements.

A comparison of the lognormal model against the simulation
results for different combinations of radii and depths shows signif-
icant deviations in the tails, see Figure B1 in Appendix B.
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Figure 1. (Upper panel) PDF of the projected density in cylindrical cells
of length d = 50, 150, 300, 450, 700 Mpc/h and radius R = 5 Mpc/h
at redshift z = 0.7. Shown is a comparison of HR4 measurements (data
points) and the prediction computed with the disk filter (4) (dashed lines)
and the finite cylinder filter (6) (solid lines) together with the spherical col-
lapse parametrized by ⌫ = 1.4. (Middle and lower panel) Residuals of the
prediction with the disk filter (middle panel) and the finite cylinder filter
(lower panel) compared to the measurements.

3.2.2 Concentric cylinders

To obtain the PDF for two concentric cylinders, one can also apply
a logarithmic density mapping that relies on the sum and difference
of mass in the two cylinders, (see for the analogous sphere case
Uhlemann et al. 2016).
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with the shifts hµki chosen such that the resulting mean densities
are one h⇢ii = 1 8i = 1, · · · , n. Furthermore, since the saddle-
point method yields only an approximation to the exact PDF, the
PDF obtained from equation (17) is not necessarily perfectly nor-
malized. In practice, this can be accounted for by considering

ˆPR({⇢k}) = PR({⇢k})/h1i , (17d)

with the shorthand notation h1i = Q
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3 VALIDATION FOR DARK MATTER DENSITIES

3.1 Horizon Run 4 simulation

The Horizon Run 4 simulation (HR4, Kim et al. 2015) is a mas-
sive N -body simulation, evolving 6300

3 particles in a 3.15 Gpc/h
box using the GOTPM TreePM code (Dubinski et al. 2004). It
assumes a WMAP-5 cosmology, with (⌦m,⌦⇤
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, ns) =

(0.26, 0.74, 0.044, 0.72, 0.79, 0.96), yielding a particle mass of
9⇥ 10

9h�1 M�. The initial conditions were generated at z = 100

using the second order Lagrangian perturbation theory, which en-
sures accurate power spectrum and halo mass function at redshift 0
(L’Huillier et al. 2014).

3.2 One-point PDF

3.2.1 Single cylinders

In Figure 1 we compare the theoretical prediction for infinitely long
cylinders, hence effectively 2D-spherical densities, and finitely
long cylinders when fixing the radius R and varying the depth
d. We find that the limit of essentially infinitely long cylinders is
achieved at 10% accuracy in the PDF for a length to radius ratio of
about d/R ' 10. We can however see that the prediction using the
finitely long cylinder with a sphere-like density mapping between
initial and final radius and depth performs better for d/R = 10

while it is getting worse for significantly bigger length to radius
ratios d/R & 30.

In Figure 2 we compare the theoretical prediction for finitely
long cylinders, using the cylindric filter with a sphere-like mapping
for initial and final radius and depth for fixed depth d = 50Mpc/h
and varying radii R finding excellent agreement with the simulation
measurements.

A comparison of the lognormal model against the simulation
results for different combinations of radii and depths shows signif-
icant deviations in the tails, see Figure B1 in Appendix B.
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Figure 1. (Upper panel) PDF of the projected density in cylindrical cells
of length d = 50, 150, 300, 450, 700 Mpc/h and radius R = 5 Mpc/h
at redshift z = 0.7. Shown is a comparison of HR4 measurements (data
points) and the prediction computed with the disk filter (4) (dashed lines)
and the finite cylinder filter (6) (solid lines) together with the spherical col-
lapse parametrized by ⌫ = 1.4. (Middle and lower panel) Residuals of the
prediction with the disk filter (middle panel) and the finite cylinder filter
(lower panel) compared to the measurements.

3.2.2 Concentric cylinders

To obtain the PDF for two concentric cylinders, one can also apply
a logarithmic density mapping that relies on the sum and difference
of mass in the two cylinders, (see for the analogous sphere case
Uhlemann et al. 2016).
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Horizon Run 4 simulation 
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Testing Cosmology with PDFs 

Model for dark matter PDF is sensitive to 
• initial power spectrum: variance(R) 
• growth function: variance(z) 
• primordial non-Gaussianity: fNL (later)

Mass density parameter Ωm 
• changes whole variance(R,z) 
• PDF seems to be a good parametrisation 

� Ωm=0.26: w0=-1

� Ωm=0.21: w0=-1

� Ωm=0.31: w0=-1
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Why: Constrain Cosmology

work in progress 

predictions vs. 
Horizon Run 4 
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Testing Cosmology with PDFs 

Model for dark matter PDF is sensitive to 
• initial power spectrum: variance(R) 
• growth function: variance(z) 
• primordial non-Gaussianity: fNL (later)

Dark energy equation of state w 
• changes linear growth 
• via Hubble function 

• dark energy time-dependence 

ML estimator

w(z) = w0 +
waz
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density 
PDF

velocity 
divergence 
PDFdensity: Codis, Pichon ++ 2016  

             Encircling the dark: … 
velocity: CU, Codis, Hahn ++ 2016 
             Two is better than one: … 

Mass density parameter Ωm 
• changes whole variance(R,z) 
• PDF seems to be a good parametrisation 

� Ωm=0.26: w0=-1

� Ωm=0.21: w0=-1

� Ωm=0.31: w0=-1
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Describing biased tracers 

• tracers: mass-weighted subhalos (real space) 
• average is good enough: mean bias relation log ⇢m = b0 + b1 log ⇢h + b2(log ⇢h)

2

polynomial bias model for log-densities

Horizon Run 4 

Reality: Biased tracers

bias function
cumulative PDF

cumulative PDF fit

scatter plot fit
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CU, Feix, Codis ++ 2017 
A question of separation: …

Combine dark matter with biasing

Jee ++ 2012

mass-weighting 
of halo densities

Seljak ++ 2009
Hamaus ++ 2010
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Combine dark matter with biasing
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Describing biased tracers 

• tracers: mass-weighted subhalos (redshift space) 
• average is good enough: mean bias relation 

Reality: Biased tracers

log ⇢m = b0 + b1 log ⇢h + b2(log ⇢h)
2

polynomial bias model for log-densities

Jee ++ 2012

mass-weighting 
of halo densities

Seljak ++ 2009
Hamaus ++ 2010

Horizon Run 4 

CU, Feix, Codis ++ 2017 
A question of separation: …
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Counts-in-cells for halos 
• in general: convolve dark matter PDF with    

joint PDF of dark matter & tracers 
• in practice: map with mean bias relation 

• final parameters: matter variance & bias 

Combine dark matter with biasing

P (⇢h) = P (⇢m(⇢h))
d⇢m
d⇢h

Reality: Biased tracers
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Counts-in-cells for halos 
• in general: convolve dark matter PDF with    

joint PDF of dark matter & tracers 
• in practice: map with mean bias relation 

• final parameters: matter variance & bias 

Combine dark matter with biasing

P (⇢h) = P (⇢m(⇢h))
d⇢m
d⇢h
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Counts-in-cells for halos in z space 
• in general: convolve dark matter PDF with    

joint PDF of dark matter & tracers 
• in practice: map with mean bias relation 

• final parameters: matter variance & bias 

Combine dark matter with biasing

P (⇢h) = P (⇢m(⇢h))
d⇢m
d⇢h

Counts-in-cells for galaxies 

• model-independent bias-extraction via CDF 

• good correspondence between galaxies and 
mass-weighted subhalos (in real space) 

Horizon AGN simulation (with Laigle)  

Reality: Biased tracers
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Take home message

Dark matter to tracers for galaxy surveys 

• mean local bias relation is good enough (also with RSD) 
• parametrise with quadratic polynomial in log-densities 
• mass-weighted halos ≈ luminosity-weighted galaxies

Counts-in-cells are en vogue

Cosmology dependence 

• initial power spectrum (for fnl also bispectrum) 
• nonlinear variance: growth rate & scale-dependence

Stay tuned! 

• Hunting high and low: for primordial non-Gaussianity 
• Cylinders out of a top-hat: for photometric surveys 

Dark matter densities in spheres & cylinders 

• theory of large deviations: most likely dynamics 
• statistics of densities from spherical collapse 
• %-level analytic predictions for R>10 Mpc/h at z=0
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Two-point sphere bias 
• density dependence of two-point clustering 
• large separation r≫R: factorisation 

• Gaussian IC: Kaiser bias + spherical collapse 
• can be combined with tracer bias 

Combine dark matter with biasing
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Joint parameter estimation 

• PDF template allows to determine parameters 
(fit or maximising likelihood) 

• degeneracy between matter variance and bias 

• add 2-pt information to break degeneracy 
• demonstrated proof of principle

Reality: Biased tracers

P (⇢(x), ⇢0(x+ r))
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Back up

Joint parameter estimation: DM variance + bias paramsCounts-in-cells statistics for biased tracers 9

Figure 8. One, two and three sigmas contours obtained by fitting the density PDF and the bias function at z = 1 and for spheres of radius R = 15Mpc/h
where ⌘ = ⇠/�2, �i = bi/� and � = �µ,m.

Figure 9. Mean one, two, three sigmas contours obtained from the 8 sub-
cubes by averaging the best fits and covariance matrix (cyan). For compari-
son, the figure of merit of the whole volume is superimposed in dark green
and a line at the target value � ⌘ �µ,m = 0.31 is displayed. As expected
the constraints on the model parameters shrink when the accessible volume
increases.

range ⇢
h

2 [0.1, 3] with bin width �⇢
h,P = 0.01 and the scaled

halo sphere bias b̃�,h

b̃�,h(⇢h) ⌘
⌦
⇢0
h

(r)|⇢
h

↵� 1 = ⇠�,hb�,h(⇢h), (21)

in the range ⇢
h

2 [0.07, 2.5] with bin width �⇢
h,b = 3/21. The

scaled halo sphere bias is used instead of the halo sphere bias as
this is the direct observable. The LDS prediction is given by

b̃�,h(⇢h) = h⇢
h

b�,m(⇢
m

(⇢
h

))i ⇠�,mb�,m(⇢
m

(⇢
h

)) , (22)

where the prefactor encodes the difference of the correlation func-
tion

p
⇠�,h/⇠�,m = h⇢

h

b�,m(⇢
m

(⇢
h

))i and is tabulated using a 5th
order Taylor expansion of ⇢

h

(⇢
m

) near one.
Using this sample, a nonlinear model fit is implemented for
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) and b�,h(⇢h) with weights determined
by the errors from the measured PDF and bias function (using boot-
strapping over 8 subsamples of the simulation). The result of the fit
for the parameters and the associated uncertainties is given in Ta-
ble 5.3 (see also Figure 8 for the corresponding figures of merit)
and agrees very well with the directly measured values reported in
Table 1. In particular, the sphere bias (i.e the two-point statistics of
density in spheres) is shown as anticipated to break the degeneracy.
Since the dark matter correlation function ⇠�,m enters as an overall
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Back up
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Back up

One-point DM PDF in cylinders with lognormal
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Back up

One-point halo PDF & cylinder bias

� R=10

� R=7

� R=5

� R=3

0 2 4 6 8
-5

-4

-3

-2

-1

0

ρh

Log10 �h(ρ)

�=���� �=��� ν=���

0.5 1.0 1.5 2.0 2.5 3.0

-3

-2

-1

0

1

2

3

4

ρh

b d=50
disk (ρh)


