

# Many-body strategies for multi-qubit gates

**Kareljan Schoutens** 

NORDITA workshop, July 31 2017





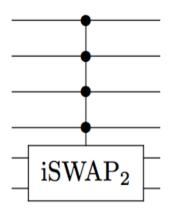
### 1-page summary

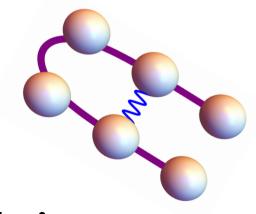
quantum circuits for quantum algorithms typically need **multi-qubit gates**: unitaries acting on more than 2 qubits

multi-qubit gates can be built from 1-qubit and 2-qubit gates, but such constructions can be cumbersome

we realize *N*-qubit gates via driven dynamics of *N* **coupled qubits** 

main mechanism is resonant coupling of eigenstates of **Krawtchouk qubit chain** 







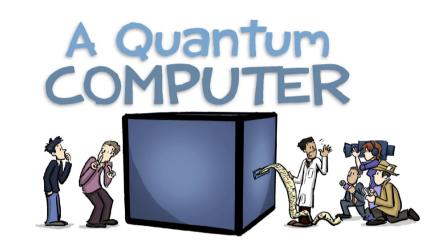
#### Many-body strategies for multi-qubit gates quantum control through Krawtchouk chain dynamics

Koen Groenland<sup>1, 2, 3</sup> and Kareljan Schoutens<sup>1, 2</sup>

<sup>1</sup>QuSoft, Science Park 123, 1098 XG Amsterdam, the Netherlands <sup>2</sup>Inst. of Physics, Univ. of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands <sup>3</sup>CWI, Science Park 123, 1098 XG Amsterdam, the Netherlands (Dated: 17 July 2017)

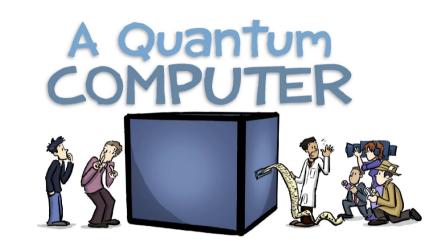
We propose a strategy for engineering multi-qubit quantum gates. As a first step, it employs an *eigengate* to map states in the computational basis to eigenstates of a suitable many-body Hamiltonian. The second step employs resonant driving to enforce a transition between a single pair of eigenstates, leaving all others unchanged. The procedure is completed by mapping back to the computational basis. We demonstrate the strategy for the case of a linear array with an even number N of qubits, with specific XX + YY couplings between nearest neighbors. For this so-called Krawtchouk chain, a 2-body driving term leads to the iSWAP<sub>N</sub> gate, which can be reworked to an iSWAP<sub>2</sub> gate with N - 2 controls or, using a single auxiliary qubit, to an (N - 1)-Toffoli gate.

#### arXiv:1707.05144v1 [quant-ph] 17 Jul 2017



# outline

- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk chain



# outline

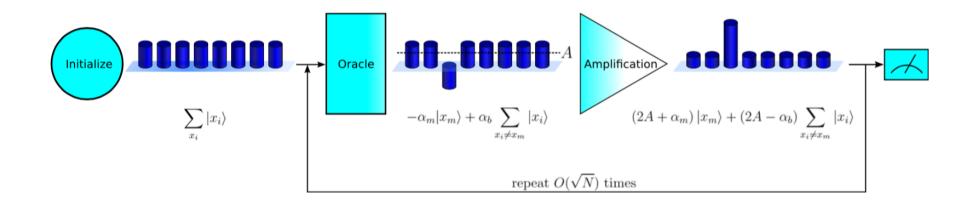
- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk chain

# quantum algorithms

For specific problems quantum algorithms can be made to outperform classical computers by cunningly combining quantum parallelism with interference.

# **Grover search algorithm:**

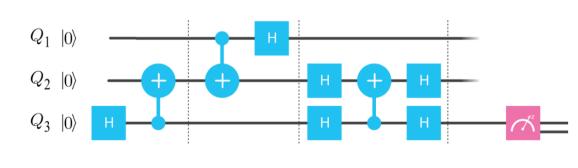
finding tagged element in size-*N* database in  $O(\sqrt{N})$  steps

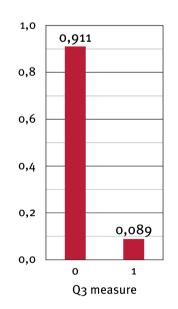


# quantum circuit

3-step implementation of quantum algorithm on *N*-qubit quantum register

- initialization
- **unitary evolution** via quantum gates
- read-out through **measurement**



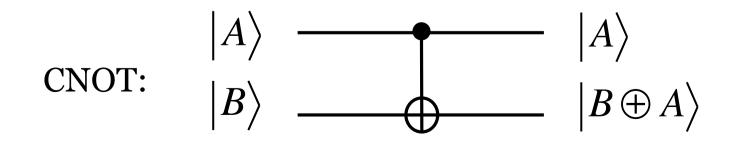


#### quantum gates

• **1-qubit gates:** *X*, *Z*, *H*, ...

$$\begin{array}{ccc} X \\ \hline X \\ X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

• 2-qubit gates: CNOT,  $XX(\theta)$ , SWAP, ...



# universal gate sets

strong universality

all *N*-qubit unitaries can be built from CNOTs plus sufficiently many 1-qubit gates

weak universality

all *N*-qubit unitaries can be approximated to arbitrary precision using CNOTs plus a suitable (finite) set of 1-qubit gates

# native gates and quantum compiling

#### native gate libraries

the 1-qubit and 2-qubit interactions that are natural for a given qubit platform lead to a `native gate library'.

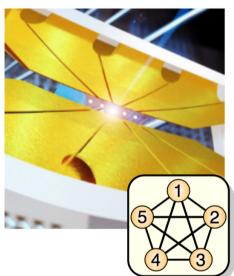
#### quantum compiling

expressing universal gates in native gates

**example:** native gate library for trapped ions

- all 1-qubit rotations  $R_{\alpha}(\theta)$ 

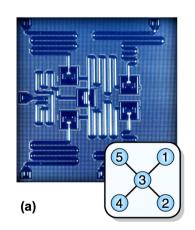
- 2-qubit gates  $X_i X_j(\theta)$ 

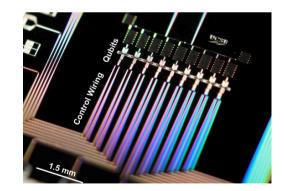


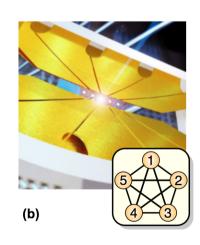
$$|q_c\rangle - |R_y(\alpha \frac{\pi}{2})| = XX(\alpha \frac{\pi}{4}) - R_y(-\alpha \frac{\pi}{2}) - R_z(-\frac{\pi}{2}) - R_z(-\frac{\pi}{2})$$

# state of the art

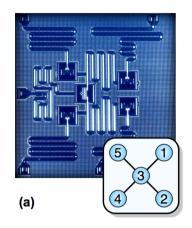
quantum hardware has progressed to the point that programmable qubit platforms with up to some 20 qubits are available  $\rightarrow$  real-world testing of few-qubit quantum algorithms!

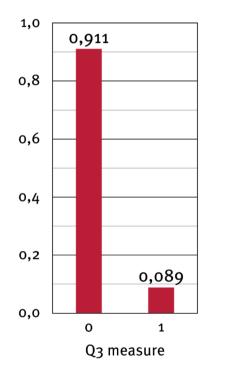




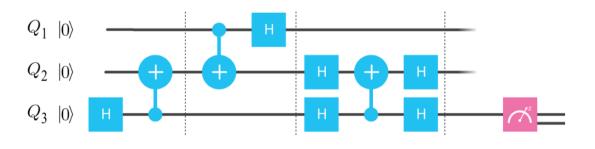


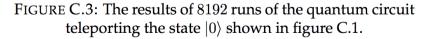
# IBM Q `Quantum Experience'





# **Quantum teleportation:** transferring qubit Q1 to Q3 at distant location





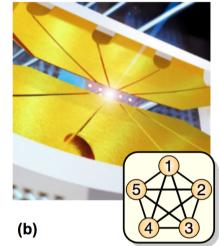
#### **Bachelor thesis Jorran de Wit (2016)**

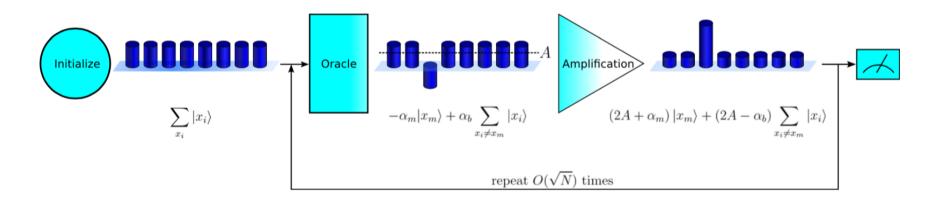
#### Complete 3-Qubit Grover Search on a Programmable Quantum Computer

C. Figgatt,<sup>1</sup> D. Maslov,<sup>2,1</sup> K. A. Landsman,<sup>1</sup> N. M. Linke,<sup>1</sup> S. Debnath,<sup>1</sup> and C. Monroe<sup>1,3</sup>

<sup>1</sup>Joint Quantum Institute, Department of Physics, and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA <sup>2</sup>National Science Foundation, Arlington, VA 22230, USA <sup>3</sup>IonQ Inc., College Park, MD 20742, USA (Dated: March 31, 2017)

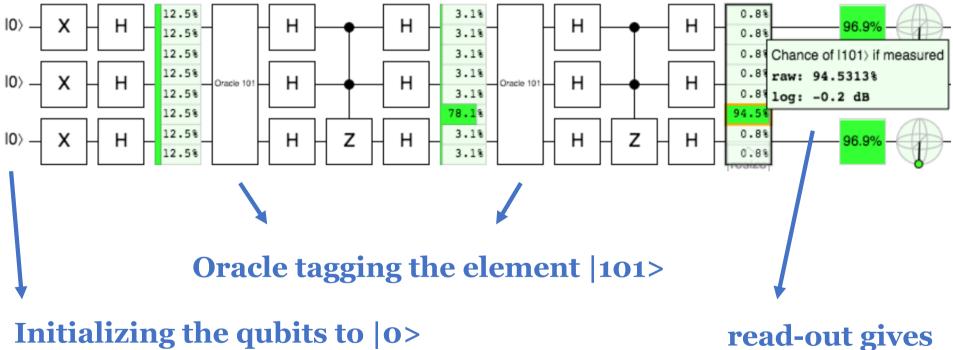
#### **Grover search:** finding tagged element in size-*N* database in $O(\sqrt{N})$ steps





# **3-qubit Grover search on Quirk:**

finds 1 out of 8 elements in two steps

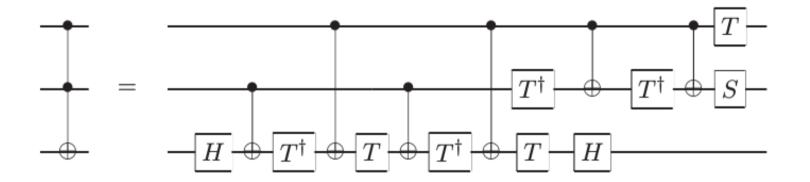


tagged element |101> with 94.5% chance

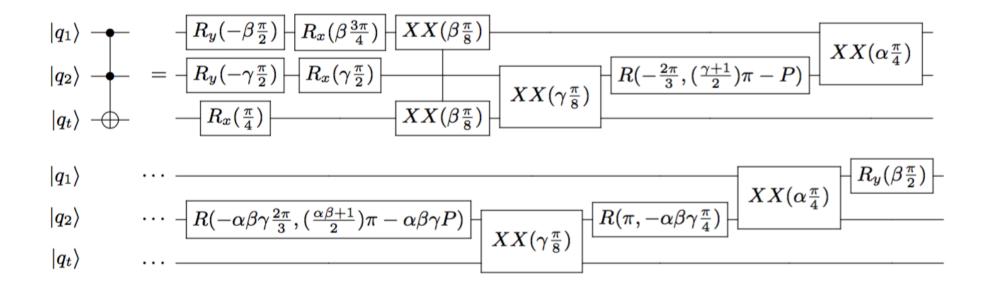
• quantum algorithms such as Grover search use gates like

CCNOT (Toffoli), CCZ, ...,  $C^{N-1}NOT$ ,  $C^{N-1}Z$ , etc

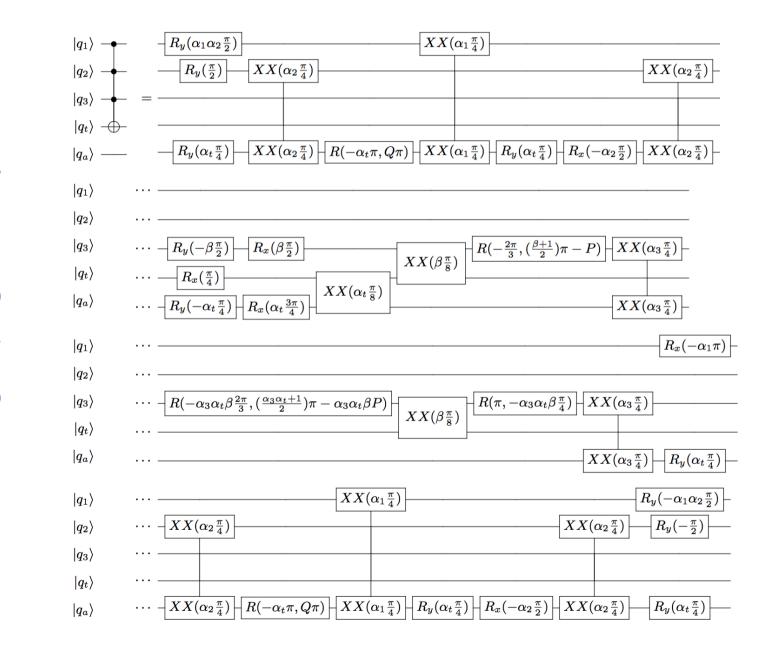
• building these from 1-qubit and 2-qubit gates requires lengthy circuits



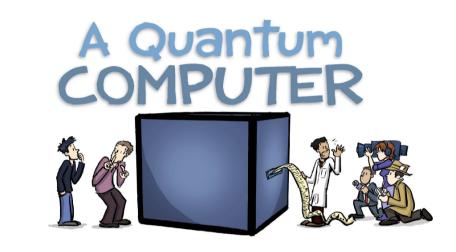
Toffoli-3 using standard Clifford + T gate library



Toffoli-3 using XX/R gate library



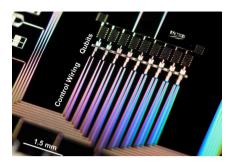
'R gate library Toffoli-4 using XX/



# outline

- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk chain

# many-body strategy



#### idea

couple N qubits, leading to a many-body spectrum

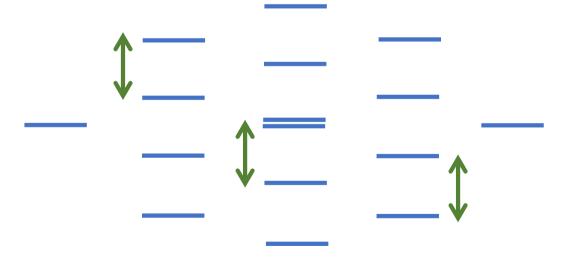
#### proposed protocol

- apply quantum circuit for *eigengate* to produce eigenstates from states in computational basis
- use resonant driving to selectively couple and interchange 2 out of  $2^N$  eigenstates
- apply eigengate to return to computational basis

many-body strategy...

protocol requires

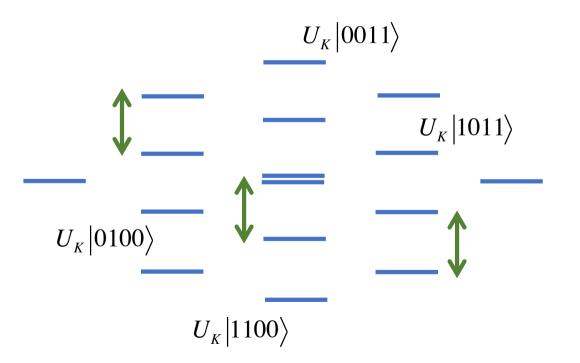
1. commensurate many-body spectrum



many-body strategy...

protocol requires

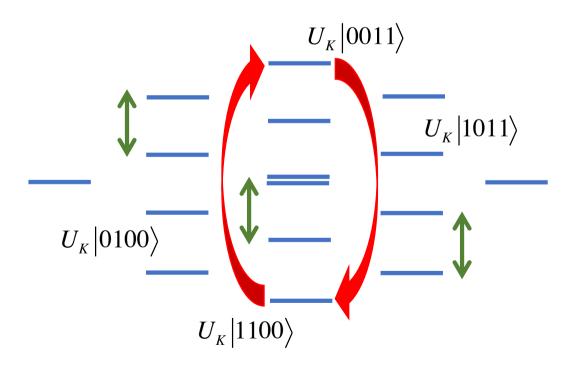
**2.** eigengate  $U_K$  producing many-body eigenstates



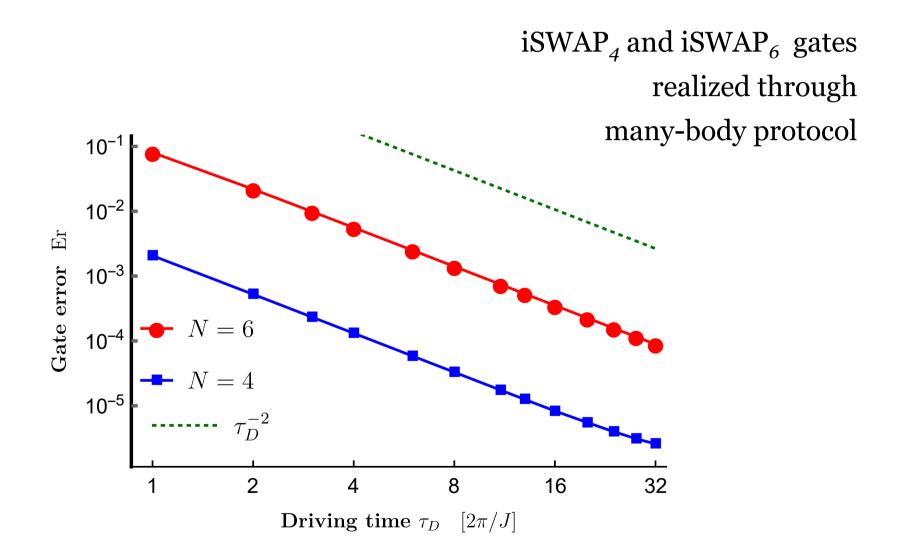
many-body strategy...

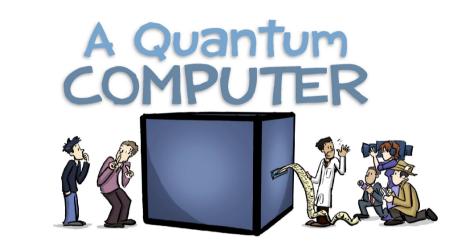
protocol requires

3. driving operator  $H_D$ 



## ... for multi-qubit gates





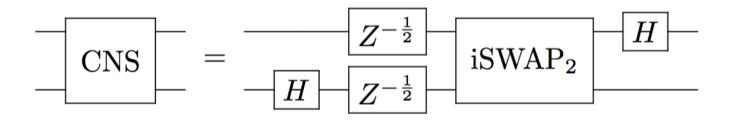
# outline

- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk chain

# 2-qubit XX+YY coupling

$$H^{(2)} = -\frac{J}{2}(X_1X_2 + Y_1Y_2)$$

- $t = \pi/J$  pulse of  $H^{(2)}$  gives gate iSWAP<sub>2</sub>,  $|00\rangle \rightarrow |00\rangle$ ,  $|01\rangle \rightarrow i |10\rangle$ ,  $|10\rangle \rightarrow i |01\rangle$ ,  $|11\rangle \rightarrow |11\rangle$
- combining iSWAP<sub>2</sub> with 1-qubit gates gives gate CNS, which is CNOT followed by SWAP



### Krawtchouk chain (N=n+1)

$$H^{K} = -\frac{J}{2} \sum_{x=0}^{n} \sqrt{(x+1)(n-x)} \left[ X_{x} X_{x+1} + Y_{x} Y_{x+1} \right]$$

• 1-body spectrum

$$\lambda_k = J(k - \frac{N-1}{2}), \qquad k = 0, 1, ..., n$$

• eigenstates

$$|\{k\}\rangle_{H^{K}} = \sum_{x=0}^{n} \phi_{k,x}^{(n)} |\{x\}\rangle \qquad \phi_{k,x}^{(n)} = K_{k,x}^{(n)} \sqrt{\frac{\binom{n}{x}}{\binom{n}{k}2^{n}}}$$

with *K*<sup>(n)</sup> the **Krawtchouk polynomials** 

$$K_{k,x}^{(n)} = \sum_{j=0}^{k} (-1)^{j} \begin{pmatrix} x \\ j \end{pmatrix} \begin{pmatrix} n-x \\ k-j \end{pmatrix}$$

# **Krawtchouk chain**

dynamics for Krawtchouk couplings known to be special Christandl-Datta-Ekert-Landahl 2004

time evolution over time  $t = \pi/J$  gives Perfect State Transfer (PST) for state with single `particle' or `spin-flip' animation:

van der Jeugt

 $t = \pi/J$  pulse on product state  $|+\rangle^{\otimes N}$ Clark-Moura Alves leads to *graph states* (or GHZ states) -Jaksch 2014

# **Realizations of** *XX*+*YY* **qubit chains**

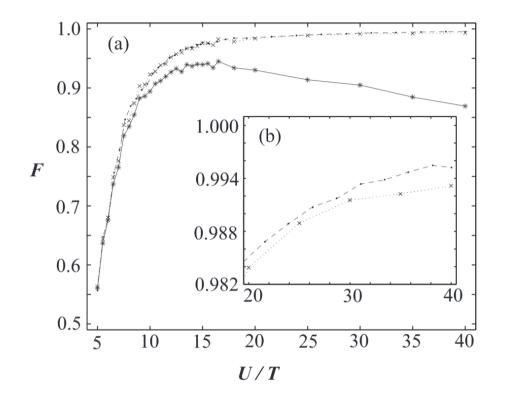
*XX*+*YY* chains can be realized with trapped ions, superconducting qubits (transmons), or cold atoms in an optical lattice.

#### cold atoms

A 2-species 1D Bose-Hubbard model in the limit U>>T can be tuned to form a Krawtchouk qubit chain

Clark-Moura Alves-Jaksch 2014

#### **Krawtchouk chain from Bose-Hubbard model**



simulation of N=6Krawtchouk chain using 2-species Bose-Hubbard model, as function of U/Tand noise  $\Delta$ 

FIG. 3: (a) The fidelity F of the effective XY spin-chain implemented by the 2-species BHM with the ratio U/T, for no noise  $\Delta = 0$  (·),  $\Delta = 1\%$  (×) and  $\Delta = 5\%$  (\*). (b) A close-up of (a). The solid, dashed and dotted lines are drawn to guide the eye.

Clark-Moura Alves -Jaksch 2014

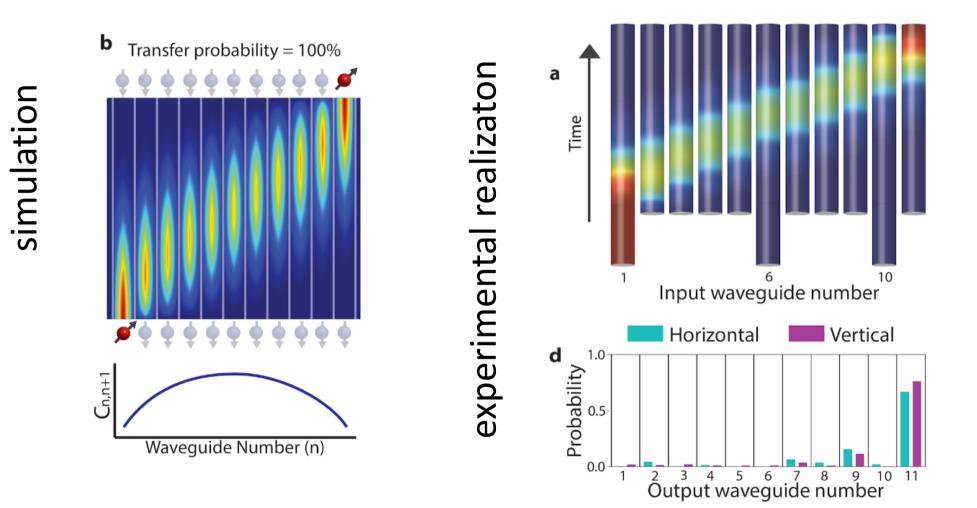
# **Experimental Perfect State Transfer**

### **Optical waveguides**

Krawtchouk couplings have been engineered, and Perfect State Transfer experimentally realized, in an array of 11 coupled optical waveguides (polarization encoded photonic qubit)

Chapman et al. 2016

#### **Optical waveguides with Krawtchouk couplings**



Chapman et al. 2016

# Krawtchouk chain (N=n+1)

$$H^{K} = -\frac{J}{2} \sum_{x=0}^{n} \sqrt{(x+1)(n-x)} \left[ X_{x} X_{x+1} + Y_{x} Y_{x+1} \right]$$

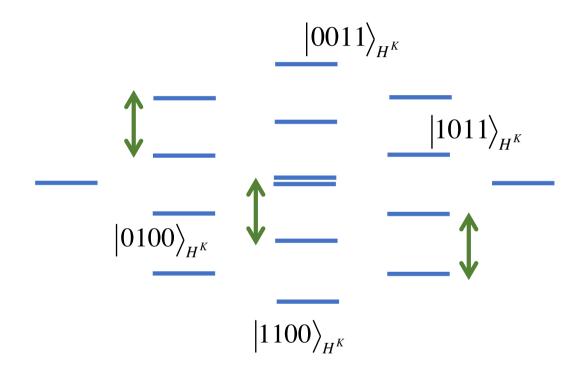
• **important clue:** mapping to free fermions through Jordan-Wigner transformation

$$\frac{1}{2} \left( X_j + i Y_j \right) = \prod_{i=0}^{j-1} (1 - 2n_i) f_j \qquad \frac{1}{2} \left( X_j - i Y_j \right) = \prod_{i=0}^{j-1} (1 - 2n_i) f_j^+$$

• many-body eigenstates built from fermionic eigenmodes

$$c_k^+ = \sum_{j=0}^n \phi_{k,j}^{(n)} f_j^+$$

# Krawtchouk chain (N=4)



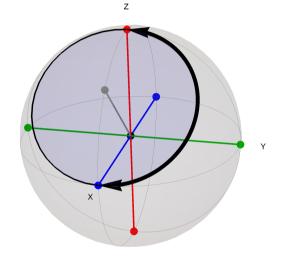
# Krawtchouk eigengate

• exact *eigengate* for Krawtchouk chain eigenstates

$$U_{K} = \exp\left(-i\frac{\pi}{J}\frac{(H^{K} + H^{Z})}{\sqrt{2}}\right)$$

with

$$H^{Z} = \frac{J}{2} \sum_{x=0}^{n} (x - \frac{n}{2})(I - Z)_{x}$$



- important clue: Krawtchouk operators  $L_X = H^K$  and  $L_Z = H^Z$  satisfy angular momentum commutation relations
- use this to prove that

$$U_{K}H^{Z} = H^{K}U_{K} \implies U_{K}|s\rangle = |s\rangle_{H^{K}}$$

# Krawtchouk eigengate, II

• equivalent expression

$$U_{K} = \exp\left(-i\frac{\pi}{2J}H^{Z}\right)\exp\left(-i\frac{\pi}{2J}H^{K}\right)\exp\left(-i\frac{\pi}{2J}H^{Z}\right)$$

• action on 1-particle states implies

$$\sum_{k=0}^{n} (-i)^{k} K_{x,k}^{(n)} K_{k,y}^{(n)} = i^{x+y-n/2} 2^{n/2} K_{x,y}^{(n)}$$

(agrees with Meixner's expansion formula)

# Multi-qubit gate: iSWAP<sub>N</sub>

• idea: for N even, driving term  $H_D(t)$  that resonantly couples the

highest energy state  $U_K | oo...o1...11 >$ to the

lowest energy state  $U_K$  | 11...10...00>

- need to annihilate the *N*/*2* fermionic modes with  $\lambda_k > o$  and create the *N*/*2* modes with  $\lambda_k < o$
- can be done by the following 2-qubit operator

$$\sigma_{j}^{-}\sigma_{j+N/2}^{+} = f_{j}^{+}[1 - 2f_{j+1}^{+}f_{j+1}]\dots[1 - 2f_{j+N/2-1}^{+}f_{j+N/2-1}]f_{j+N/2}$$

# Multi-qubit gate: iSWAP<sub>N</sub>

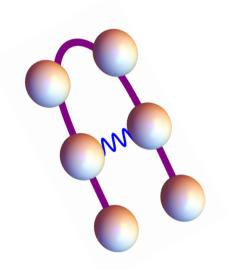
• for *N*=6: matrix element

$$\langle 111000 | U_{K}(\sigma_{1}^{+}\sigma_{4}^{-}-\sigma_{4}^{+}\sigma_{1}^{-})U_{K} | 000111 \rangle = \frac{5}{32}$$

• resonant driving term

$$H_D^{(1,-)}(t) = i J_D \cos[9Jt] [\sigma_1^+ \sigma_4^- - \sigma_4^+ \sigma_1^-]$$

• conditions on driving time  $\tau_D$ 

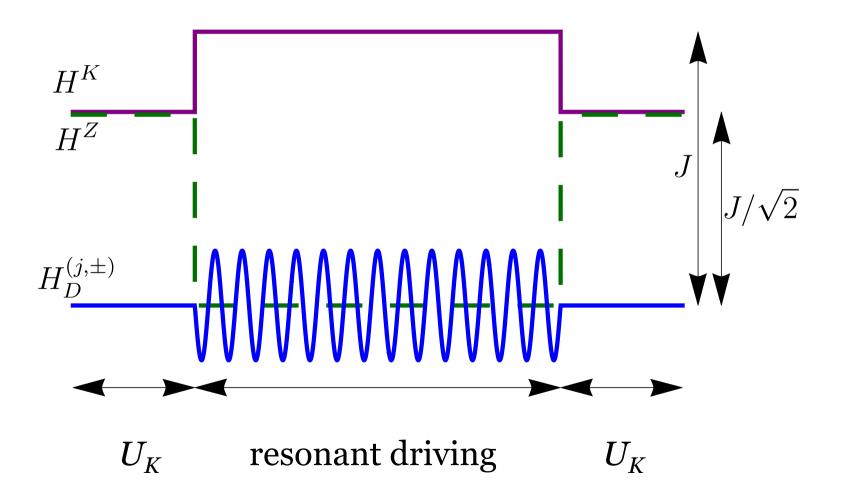


 $\tau_D(5J_D / 64) = \pi / 2$   $\tau_D = M(2\pi / J)$ 

so that (in leading order) |*000111*> and |*111000*> are interchanged and all dynamical phases return to 1

# many-body protocol for iSWAP<sub>6</sub>

 $|000111\rangle \rightarrow i|111000\rangle, |111000\rangle \rightarrow i|000111\rangle$ 



## resonant driving – fidelity

$$H_D(t) = \begin{pmatrix} E_1 & d e^{i\omega t} \\ d e^{-i\omega t} & E_2 \end{pmatrix} \qquad \Delta = \omega - (E_2 - E_1)$$

#### **on resonance:** $\Delta = 0$

$$v_1(t) = e^{-iE_1t}\cos(dt), \quad v_2(t) = -ie^{-iE_2t}\sin(dt)$$

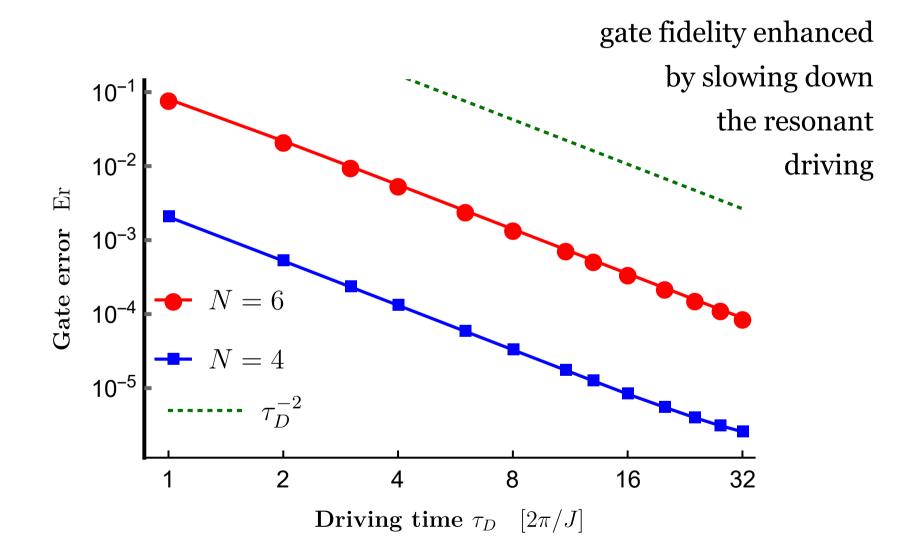
#### resonant driving – fidelity

$$H_D(t) = \begin{pmatrix} E_1 & d e^{i\omega t} \\ d e^{-i\omega t} & E_2 \end{pmatrix} \qquad \Delta = \omega - (E_2 - E_1)$$

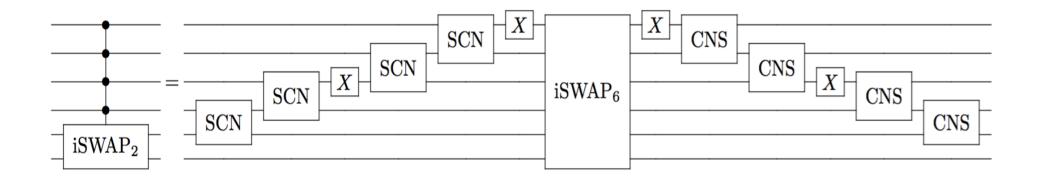
**off resonance:**  $\Delta \neq 0$   $d \ll \Delta$ 

 $dt = \pi/2$   $t = 2\pi M$   $\Delta, (E_2 - E_1)$  integer

# gate fidelities for iSWAP<sub>4</sub> and iSWAP<sub>6</sub>

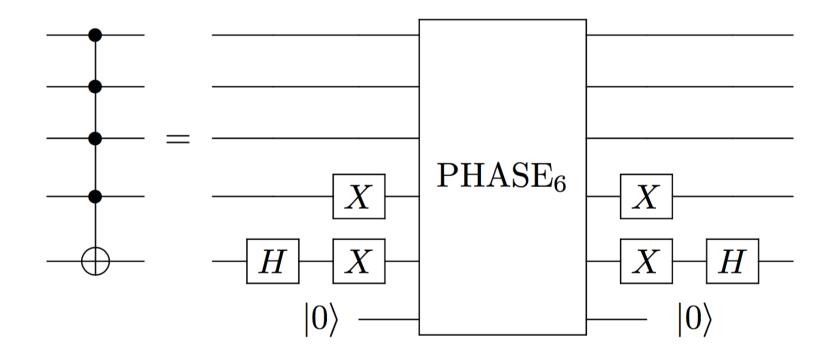


## multi-qubit gates ...



iSWAP<sub>2</sub> with 4 controls using iSWAP<sub>6</sub> gate

### multi-qubit gates ...



Toffoli-5 using double strength iSWAP<sub>6</sub> gate called PHASE<sub>6</sub>

# done & to be done

- exact eigengates giving fast quantum circuits for Krawtchouk eigenstates
- resonant driving targeting 2 out of  $2^N$  states
- iSWAP<sub>N</sub> reworked into multi-qubit gate with *N-1* or *N-2* controls.
- improve the resonant driving part (pulse shaping, correct for Lamb shifts)
- sensitivity to noise?
- window in *N* where protocol can be realistic?
- experimental implementation
- other incarnations of the many-body strategy

