
PDC Summer School 2016 - Introduction to CUDA II

Introduction to CUDA:
additional features

2015-08-19

Michael Schliephake

Szilárd Páll
KTH – CSC – HPCViz

PDC Summer School 2016

PDC Summer School 2016 - Introduction to CUDA II2

1. Control flow divergence
2. CUDA memories (contd.)
3. Streams
4. Multiple GPUs
5. Atomic operations

PDC Summer School 2016 - Introduction to CUDA II3

Control Flow DivergenceControl Flow Divergence

Code example:

int i = threadIdx.x + blockDim.x*blockIdx.x;

if ((i&1) == 0)
 x[i] += 1;
else
 x[i] += 2;

● Half the threads in the warp must execute the if clause,
the other half the else clause

● Nested branches, case statements are handled
similarly, even more threads temporarily disabled

PDC Summer School 2016 - Introduction to CUDA II4

Control Flow Divergence

● In general, no need to consider divergence for correctness of a
program

● Certain code constructs can cause deadlock (e.g. threads in warp spin
on a lock).

● However, most programmers are unlikely to be tempted to code such
constructs

● In general, need to consider divergence for performance of a
program

● Divergence causes: extra instructions / memory op.
● Compiler/hw can detect uniform branches

● Hardware optimized to avoid loss of performance

PDC Summer School 2016 - Introduction to CUDA II5

Control Flow Divergence
predicated execution

● The compiler can also compile short conditional clauses to
predicates

● Predicated instructions
● Avoids branch divergence overheads, and is more efficient
● Often acceptable performance with short conditional clauses

PDC Summer School 2016 - Introduction to CUDA II6

CUDA Memories

Page-Locked Host Memory
CUDA Memories

Page-Locked Host Memory

● Allocation and Use
cudaHostAlloc(ptr, size, unsigned flags);
// or cudaMallocHost(ptr, size);

[...]
cudaMemcpy(...);

[...]
cudaFreeHost(void *ptr)

● No OS paging DMA access possible→
● Optimal transfer speed: limited only by PCI-E & system bus
● Required to allow transfer–kernel overlap
● Risk of performance hit for host system (reduced flexibility for OS

to manage memory)

PDC Summer School 2016 - Introduction to CUDA II7

CUDA Memories

Zero-Copy Host Memory
CUDA Memories

Zero-Copy Host Memory
● Allocation and Use:

cudaHostAlloc((void **)&ptr, size,
cudaHostAllocMapped);

cudaHostGetDevicePointer(&dev_ptr,ptr);
kernel<<...>>(dev_ptr);
cudaFreeHost(ptr);

● Data accessed directly from the CUDA kernel, does
not require explicit copies

● Performance gain different for
● internal GPU: always
● discrete GPU: possible if data read and written

only once (latency hiding possible)
● differentiate with cudaGetDeviceProperties()

PDC Summer School 2016 - Introduction to CUDA II8

CUDA StreamsCUDA Streams

● Task-parallelism in CUDA programs
● Queues of ordered GPU commands:

● Kernel, transfer, event, sync
● Allows expressing concurrency
● Maximize execution overlap performance→

● host – device
● transfer – kernel
● device – device

● Priorities: 2 levels Kepler and later
● Code examples

http://developer.nvidia.com/cuda-cc-sdk-code-samples

http://developer.nvidia.com/cuda-cc-sdk-code-samples

PDC Summer School 2016 - Introduction to CUDA II9

Example for
Stream-Scheduling
Example for
Stream-Scheduling

Copy Host -> Device

Execute Kernel 1

Execute Kernel 2

Copy Device -> Host

Copy Host -> Device

Execute Kernel 1

Execute Kernel 2

Copy Device -> Host

Stream 1 Stream 2

PDC Summer School 2016 - Introduction to CUDA II10

Creation and Use of CUDA StreamsCreation and Use of CUDA Streams

● Stream creation
cudaStreamCreate(&stream);

● Memory transfer
cudaMemcpyAsync(dev_a, host_a,

N*sizeof(int),
cudaMemcpyHostToDevice,
stream);

● CUDA kernel execution
Kernel<<<N/256, 256,0,stream>>>(dev_a);

PDC Summer School 2016 - Introduction to CUDA II11

Efficient use of CUDA streams

for (int i=0; i<FULL_DATA_SIZE; i+= N*2) {

// Transfer a
cudaMemcpyAsync(dev_a0, host_a+I, N * sizeof(int), cudaMemcpyHostToDevice,

stream0);
cudaMemcpyAsync(dev_a1, host_a+i+N, N * sizeof(int), cudaMemcpyHostToDevice,

stream1);

// Transfer b
cudaMemcpyAsync(dev_b0, host_b+I, N * sizeof(int), cudaMemcpyHostToDevice,
stream0);
cudaMemcpyAsync(dev_b1, host_b+i+N, N * sizeof(int), cudaMemcpyHostToDevice,

stream1);

// Compute
compute<<<N/256,256,0,stream0>>>(dev_a0, dev_b0, dev_c0);
compute<<<N/256,256,0,stream1>>>(dev_a1, dev_b1, dev_c1);

// Transfer c
cudaMemcpyAsync(host_c+i, dev_c0, N * sizeof(int), cudaMemcpyDeviceToHost,

stream0);
cudaMemcpyAsync(host_c+i+N, dev_c1, N* sizeof(int), cudaMemcpyDeviceToHost,

stream1);

}

PDC Summer School 2016 - Introduction to CUDA II12

Multiple GPUsMultiple GPUs

● Select the device, create a stream and
execute the kernel

// Use device 0
cudaSetDevice(0);
cudaStream_t s0;
cudaStreamCreate(&s0);
compute<<<100, 64, 0, s0>>>();

// Use device 1
cudaSetDevice(1);
cudaStream_t s1;
cudaStreamCreate(&s1);
computel<<<100, 64, 0, s1>>>();

PDC Summer School 2016 - Introduction to CUDA II13

Multiple GPU

Device-device memory access
Multiple GPU

Device-device memory access

● Example for kernel on device 1 using memory on device
0

cudaSetDevice(0); // Set device 0 as current
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0

cudaSetDevice(1); // Set device 1 as current
// Enable peer-to-peer access
cudaDeviceEnablePeerAccess(0, 0);
// With device 0 Launch kernel on device 1. This kernel
// launch can access memory on device 0 at address p0
compute<<<1000, 128>>>(p0);

PDC Summer School 2016 - Introduction to CUDA II14

Multiple GPU

Device-device memcpy
Multiple GPU

Device-device memcpy

● Example for memory copy between devices

// Set device 0 as current
cudaSetDevice(0);
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size); // Allocate memory on device 0

cudaSetDevice(1); // Set device 1 as current
float* p1;
cudaMalloc(&p1, size); // Allocate memory on device

cudaSetDevice(0); // Set device 0 as current
compute<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1); // Set device 1 as current
cudaMemcpyPeer(p1, 1, p0, 0, size); // Copy p0 to p1
compute<<<1000, 128>>>(p1); // Launch kernel on device 1

PDC Summer School 2016 - Introduction to CUDA II15

Atomic Operations

Race Conditions
Atomic Operations

Race Conditions

● Race condition: given when calculation result is
depending on the relative order of multiple parallel
or interlaced execution sequences

● Typical problem: interruptions of sequences of read,
modify and write instructions

0

3

3

8

v += 3

v += 5

0

3

0

5

v += 3

v += 5

PDC Summer School 2016 - Introduction to CUDA II16

Atomic OperationsAtomic Operations

● Atomic operations make instructions non-
inerruptable

● Allow simultaneous access to data
● Examples of atomic operations

● atomicCAS()
● atomicAdd()
● atomicSub()
● atomicMin()
● …

PDC Summer School 2016 - Introduction to CUDA II17

Atomic Operations

Example Scalar Product
Atomic Operations

Example Scalar Product

__global__ void dot(int *a, int *b, int *c) {

 __shared__ int temp[THREADS_PER_BLOCK];

 int index = threadIdx.x + blockIdx.x*blockDim.x;

 temp[threadIdx.x] = a[index]*b[index];

 __syncthreads();

 if (0 == threadIdx.x) {

 int sum = 0;

 for (int i = 0; i < THREADS_PER_BLOCK; i++)

 sum += temp[i];

 atomicAdd(c , sum);

 }

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

