
21/08/16

1

1

Basic MPI
Point-to-Point Communication

Erwin Laure  
Director PDC

What we know already

n  MPI program structure
n  Communicators and ranks
n  Syntax of MPI commands
n  6 basic MPI commands

2

21/08/16

2

Contents

n  Sending data from A to B
n  Message format
n  Buffers and semantics
n  Communication modes

-------------------- TUESDAY -----------------------

n  Deadlocks

n  Blocking and non-blocking communication

3

Sending Data from A to B …

n  The basic function of any message passing library
n  Typically a SEND/RECEIVE pair

n  Needed when process X needs data from process Y

n  Two main incarnations
n  Blocking: stops the program until it is safe to continue
n  Non-blocking: separates communication from computation

4

P1 P2

send(x)
recv(y)

e=isend(x) e=irecv(y)
wait(e) wait(e)

21/08/16

3

Send/Receive in MPI

n  (buf, count, datatype) describes the data to be
sent

n  Dest is the rank of the destination in the group
associated with communicator comm

n  tag is an identifier of the message
n  comm identifies a group of processes

n  status provides information on the message received,
including source, tag, and count 5

MPI_Send (buf, count, datatype, dest, tag, comm)

MPI_Recv (buf, count, datatype, source, tag,
 comm, status)

Basic MPI Message Syntax

n  An MPI message consists of an envelope and message
body – think of it like a letter in the mail:

n  The envelope of an MPI message has four parts:
n  Source — the sending process
n  Destination — the receiving process
n  Communicator — specifies a group of processes to which both

source and destination belong
n  Tag — used to classify messages

n  The message body has three parts:
n  Buffer — the message data
n  Datatype — the type of the message data
n  Count — the number of items of type datatype in buffer

6

21/08/16

4

Basic Send/Receive Commands
int MPI_Send(void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);

MPI_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, IERR)

int MPI_Recv(void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm, MPI_Status
*status);

MPI_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
STATUS, IERR)

7

Body
Destination
Tag
Communicator

Envelope
Buffer
Count
Datatype

Example
 double a[100],b[100];

 if(myrank == 0) /* Send a message */

 {
 for (i=0;i<100;++i)
 a[i]=sqrt(i);
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 }
 else if(myrank == 1) /* Receive a message */

 MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);

8

What happens
if b is replaced
with a?

21/08/16

5

Wildcards

n  Instead of specifying everything in the envelope explicitly,
wildcards can be used for sender and tag:

MPI_ANY_SOURCE and MPI_ANY_TAG
n  Actual source and tag are stored in STATUS variable

C:
MPI_Status status;
MPI_Recv(b, 100, MPI_DOUBLE,  
 MPI_ANY_SOURCE, MPI_ANY_TAG,  
 MPI_COMM_WORLD, &status);

source = status.MPI_SOURCE;
tag = status.MPI_TAG;

9

Wildcards cont’d

n  Fortran:

integer status(MPI_STATUS_SIZE)
call MPI_RECV(b, 100, MPI_DOUBLE_PRECISON,  
 MPI_ANY_SOURCE, MPI_ANY_TAG,  
 MPI_COMM_WORLD, &status);

tag = status(MPI_TAG)
source = status(MPI_SOURCE)

10

21/08/16

6

Message Size

n  Semantics of receiving buffer is that it has to be at least as
large as the message to be received – the actual data
received might be smaller!

n  Again, actual information is stored in STATUS variable:

int MPI_Get_count(MPI_Status *status,  
 MPI_Datatype dtype, int *count);

11

A Word on Buffering

n  MPI implementations typically use (internal) message
buffers
n  Sending process can safely modify the sent data once it is copied

into the buffer, irrespectively of status of receiving process
n  Receiving process can buffer incoming messages even if no (user

space) receiving buffer is provided, yet
n  Buffers can be on both sides

12

P1 P2

send(x)

recv(y)

buffer

P1 P2

send(x)

recv(y)

buffer

21/08/16

7

Note

This system buffer is DIFFERENT to the message buffer you
specify in the MPI_Send or MPI_Recv calls!

13

A Word on Buffering Cont’d

n  The efficiency of MPI implementations critically depends
on how buffers are being handled
n  A great source for optimization
n  Out of scope for this lecture

n  Different handling of buffers can show different effects –
hard to debug!
n  E.g. while in general no handshake between sending and

receiving process is needed (i.e sending process may continue
after data is copied into buffer even if no matching receive has
been posted, yet) large messages or lack of buffering space may
require synchronization with receiving process

n  Sometimes explicit buffers are required (see later) and lack of
sufficient buffer space will cause the communication to fail.

14

21/08/16

8

Blocking and Completion

n  Both MPI_Send and MPI_Recv are blocking
n  They program only continues after they are completed

n  The command is completed once it is safe to (re)use the
data
n  MPI_Recv: data has been fully received

n  MPI_Send: can be completed even if no non-local action has
been taking place. WHY?

n  Once data is copied into a send buffer MPI_Send can complete

15

Message Order

n  MPI messages are non-overtaking
n  If the sender sends two messages (with the same envelope) to

the same destination they have to be received in the same order

IF (rank.EQ.0) THEN
 CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
 CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag1, comm, ierr)

ELSE ! Rank.EQ.1

 CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG,  
 comm, status, ierr)
 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm,  
 status, ierr)
END IF

16

21/08/16

9

Deadlock or not?
IF (rank.EQ.0) THEN
 CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm,  
 ierr)
 CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm,  
 ierr)

ELSE ! rank.EQ.1

 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm,  
 status, ierr)
 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm,  
 status, ierr)

END IF

17

Fairness

n  MPI makes no guarantees about fairness
n  If there are two matching sends (from different sources) for a

receive any of these can be successful
n  MPI does not prevent operation starvation (e.g. sends that will

never be picked up)

18

21/08/16

10

What have we learned?

n  The semantics of MPI_Send/MPI_Recv are quite
implementation dependent

n  How can we get more control on what is actually
happening?
n  MPI provides different communication modes with different

semantics

19

MPI Communication Modes

n  Synchronous mode
n  Syntax: MPI_Ssend(…)
n  Semantics: handshake required, send will block until matching

receive has been posted and receiving has started

n  Ready mode
n  Syntax: MPI_Rsend(…)
n  Semantics: user guarantees that matching receive has already

been posted; similar to synchronous but no need for handshake

n  Buffered mode
n  Syntax: MPI_Bsend(…)
n  Semantics: send buffer will be used and command returns once

data is locally copied; send buffer needs to be provided by user
20

21/08/16

11

Discussion

n  Standard MPI_Send(…) behaves like MPI_Bsend or
MPI_Ssend depending on message size and internal
buffer space

n  For portability and safety reasons you should always
assume MPI_Ssend semantics
n  Don’t assume MPI_Send(…) will return irrespectively of

matching receive status

21

Discussion Cont’d

n  MPI_Bsend will fail if not enough buffer space is available
n  You must provide sufficient buffer space in user space to an MPI

process:

int MPI_Buffer_attach(void* buffer, int size)
MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)

int MPI_Buffer_detach(void* buffer_addr, int* size)

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR) 

n  This buffer is only used for buffered send and detach will
block until all data is actually sent.

22

21/08/16

12

Pros and Cons of different modes

Advantages Disadvantages
Synchronous Mode

Safest, most portable Can occur substantial
synchronization overhead

Ready Mode
Lowest total overhead Difficult to guarantee that receive

precedes send
Buffered Mode

Decouples send from receive Potentially substantial overhead
through buffering

Standard Mode
Most flexible, general purpose Implementation dependent

23

End of Today’s Lecture

24

21/08/16

13

Deadlocks

n  Deadlocks are common (and hard to debug) errors in
message passing programs

n  A deadlock occurs when two (or more) processes wait on
the progress of each other:

 if(myrank == 0) {
 /* Receive, then send a message */
 MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,  
 &status);
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 }
 else if(myrank == 1) {
 /* Receive, then send a message */
 MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,  
 &status);
 MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);25

How to avoid Deadlocks?

n  Careful organize the communication in your program
n  Make sure sends are always paired with receives in the correct

order
n  A difficult task in large programs!

n  Don’t depend on how specific implementations handle
their internal buffers
n  A program may work well with certain problem sizes but deadlock

once you increase the problem size or move to a different
architecture or MPI implementation because of internal buffer
limitations

26

21/08/16

14

Communication modes revisited
IF (rank.EQ.0) THEN
 CALL MPI_SSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
 CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE ! rank.EQ.1
 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)
END IF

IF (rank.EQ.0) THEN

 CALL MPI_SEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
 CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE ! rank.EQ.1
 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)
END IF

IF (rank.EQ.0) THEN
 CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
 CALL MPI_SEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE ! rank.EQ.1
 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF 27

D
E

A
D

LO
C

K

S
Y

S

D
E

P.

O
K

(If

 …
)

Help to avoid Deadlock

n  Careful ordering of send/receives is facilitated by a
combined send/receive command:

int MPI_Sendrecv(void *sendbuf, int sendcount,  
 MPI_Datatype sendtype,
 int dest, int sendtag,
 void *recvbuf, int recvcount,  
 MPI_Datatype recvtype,
 int source, int recvtag, MPI_Comm  
 comm, MPI_Status *status)

n  Advantage: order of send/receive irrelevant; receive will
not be blocked by potentially blocking send

n  Very useful for shift operations
28

21/08/16

15

Sendrcv Example
if (myid == 0) then
 call mpi_send(a,1,mpi_real,1,tag,MPI_COMM_WORLD,ierr)
 call mpi_recv(b,1,mpi_real,1,tag,MPI_COMM_WORLD,  
 status,ierr)
elseif (myid == 1) then
 call mpi_send(b,1,mpi_real,0,tag,MPI_COMM_WORLD,ierr)
 call mpi_recv(a,1,mpi_real,0,tag,MPI_COMM_WORLD,  
 status,ierr)
end if

if (myid == 0) then
 call mpi_sendrecv(a,1,mpi_real,1,tag1,
 b,1,mpi_real,1,tag2,
 MPI_COMM_WORLD, status,ierr)
elseif (myid == 1) then
 call mpi_sendrecv(b,1,mpi_real,0,tag2,
 a,1,mpi_real,0,tag1,
 MPI_COMM_WORLD, status,ierr)
end if 29

Help to avoid Deadlocks Cont’d

n  Careful message ordering
n  Always a good idea!

n  Buffered communication
n  But comes with (quite substantial) overhead

n  Non-blocking calls

30

21/08/16

16

Non-blocking Communication

n  For all send/receive calls there is a non-blocking
equivalent named I(x)send/Irecv

n  Non-blocking calls will return immediately irrespectively of
the send/receive status
n  They actually only initiate the action
n  Actual sending/receiving of messages will be handled internally in

the MPI implementation
n  Calls return a handle that allows to check the progress of sending/

receiving

n  Blocking and non-blocking calls can be intermixed
n  A blocking receive can match a non-blocking send and vice-versa.

31

Non-blocking Syntax
int MPI_Isend(void *buf, int count, MPI_Datatype dtype, int
dest, int tag, MPI_Comm comm, MPI_Request *request);

MPI_ISEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, REQ, IERR)

n  Request is the handle to the request

n  Important: None of the arguments passed to MPI_ISEND
must be read or written until the send operation is
completed.

32

21/08/16

17

Completion of non-blocking send/receives

int MPI_Wait(MPI_Request *request, MPI_Status
*status);
MPI_WAIT(REQUEST, STATUS, IERR)

n  MPI_Wait is blocking and will only return when the
message has been sent/received
n  After MPI_Wait returns it is safe to access the data again

int MPI_Test(MPI_Request *request, int *flag,  
 MPI_Status *status);
MPI_TEST(REQUEST, FLAG, STATUS, IERR)

n  MPI_Test returns immediately
n  Status of request is returned in flag (true for done, false when still

ongoing) 33

Deadlock Example revisited

 if(myrank == 0) {
 /* Receive, then send a message */
 MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,  
 &status);
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 }
 else if(myrank == 1) {
 /* Receive, then send a message */
 MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,  
 &status);
 MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);

34

21/08/16

18

Example
if(myrank == 0) {
 /* Post a receive, send a message, then wait */
 MPI_Irecv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,  
 &request);
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 MPI_Wait(&request, &status);
}
else if(myrank == 1) {
 /* Post a receive, send a message, then wait */
 MPI_Irecv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,  
 &request);
 MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
 MPI_Wait(&request, &status);
}

n  No deadlock because non-blocking receive is posted before send
35

Discussion

n  Non-blocking communication has two main benefits:

n  Helps avoid deadlocks
n  Allows to overlap communication with computation (latency hiding)

•  More about that later on

n  Disadvantage:
n  Makes code more complex to read/understand and thus debug

and maintain.
n  Limitations of internal data structures to keep track of outstanding

requests

36

21/08/16

19

Summary

n  MPI provides blocking and non-blocking communication
n  4 communication modes

n  You should now be able to program message passing
applications

n  Everything you want to do can be done with the (6) basic
commands you know now.
n  But many tasks would be awkward and inefficient – hence the

lecture continues

n  Beware deadlocks!

37

