
Multiprocessors

Erik Hagersten
Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 2

PDC
Summer
School
2016

Outline of these lectures
1.  Processor implementations
2.  Caches and memory system
3.   Multiprocessors
4.  HW optimizations
5.  Multicore processors
6.  SW optimizations

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 3

PDC
Summer
School
2016

The era of the “supercomputer”
multiprocessors in the 1990s

n  The one with the most blinking lights wins
n  The one with the strangest languages wins
n  The niftier the better!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 4

PDC
Summer
School
2016

Focus of this
session

SIMD MIMD

Message-
passing

Shared
Memory

UMA NUMA COMA Fine-
grained

Coarse-
grained

Taxomy for Architectures [Flynn]

Coherent Shared Memory

Erik Hagersten
Uppsala University

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 6

PDC
Summer
School
2016

Programming Model: Shared Memory

Shared Memory

Thread
 pc->

Thread
 pc->

Thread
 pc->

Thread
 pc->

Thread
 pc->

Thread
 pc->

Thread
 pc->

Thread
 pc->

Thread-Level Parallelism (TLP)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 7

PDC
Summer
School
2016

Adding Caches:
Cuts latency and memory bandwidth

Shared Memory

Thread
 pc

$

Thread
 pc

$

Thread
 pc

$

Thread
 pc

$

Thread
 pc

$

Thread
 pc

$

Thread
pc

$

Thread
 pcà

$

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 8

PDC
Summer
School
2016

Caches:
Automatic Replication of Data

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…

B:

Read B
…
Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 9

PDC
Summer
School
2016

The Cache Coherent Memory System

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 10

PDC
Summer
School
2016

The Cache Coherent 2

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A

B:

Read B
…
Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 11

PDC
Summer
School
2016

Writeback

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A ...
A gets replaced

B:

Read B
…
Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 12

PDC
Summer
School
2016

Summing up Coherence

 Sloppy: there can be many copies
of a datum, but only one value

 Coherence: There is a single global
order of value changes to each datum

Too strong

definition!

 Memory order/model: Defines the
order between accesses to many data

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 13

PDC
Summer
School
2016

Implementing Coherence

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 14

PDC
Summer
School
2016

S
tate

S
tate

”Upgrade” in snoop-based

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

S
tate

Per cachline
state info

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 15

PDC
Summer
School
2016

Cache implementation
”8-way set-associative cache”

Generic Cache:

Addr [63..0]
MSB LSB

AT S Data = 64B

=

Cacheline:

...

= = = = = = =

mux
Hit

Sel way ”6”

Data = 64B

index

SRAM:

Miss

Miss

...

Per cachline
state info

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 16

PDC
Summer
School
2016

S
tate

S
tate

”Upgrade” in snoop-based

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

BusINV

Have to
INV

Have to
INV

My
INV S

tate

Per cachline
state info

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 17

PDC
Summer
School
2016

S
tate

S
tate

S
tate

Cache-to-cache in snoop-based

Thread

$

Thread

$

Thread

$

A:

...
Read A
…
Write A

B:

Read B
…
Read A

BusRTS

My RTS
à wait
for data

Gotta
answer

Read A
Read A
…
…
Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 18

PDC
Summer
School
2016

S
tate

S
tate

S
tate

”Upgrade” in dir-based

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV

Who has
a copy

Who has
a copy

INV

ACK ACK

ACK

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 19

PDC
Summer
School
2016

S
tate

S
tate

S
tate

Read A
Read A
…
…
Read A

Cache-to-cache in dir-based

Thread

$

Thread

$

Thread

$

A:

...
Read A
…
Write A

B:

Read B
…
Read A

Forward

ReadRequest

Who has
a copy

Who has
a copy

ReadDemand
Ack

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 20

PDC
Summer
School
2016

Directory-based coherence:
Per-cachline info in the memory

Thread

$

Thread

$

Thread

$

A: B:

Cache access Cache access Cache access

Directory Protocol

S
tate

S
tate

S
tate

Directory
state

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 21

PDC
Summer
School
2016

Directory-based snooping: NUMA.
Per-cachline info in the home node

Thread

$

Thread

$

A: B:

Cache access Cache access

Directory Protocol

S
tate

S
tate

Directory Protocol

Interconnect

Directory
state

Directory
state

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 22

PDC
Summer
School
2016

Multisocket

I/F

I/F

100

DRAM

DRAM

Coherence = Non-Uniform (NUMA)
Coherence

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 23

PDC
Summer
School
2016

AMD Multi-socket Architecture
(same applies to Intel multi-sockets)

I/O I/O

Coherence = Non-Uniform

L3 L3

L3 L3
Cpu

Dir Dir

Dir Dir

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 24

PDC
Summer
School
2016

False sharing:
Coherence is maintained with a
cache-line granularity

A B C D E F G H

Read A
Write A
…
…
Read A

Thread

Read E
…
Write E

Thread

Coherence misses even though
the threads do not share data
”the cache line is too large”

Cache Line

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 25

PDC
Summer
School
2016

More Cache Lingo
n  Capacity miss – too small cache
n  Conflict miss – limited associativity
n  Compulsory miss – accessing data the first time
n  Coherence miss – I would have had the data unless

it had been invalidated by someone else
n  Upgrade miss (only for writes) – I would have had a

writable copy, but gave away readable data and
downgraded myself to read-only

n  False sharing: Coherence/downgrade is caused by a
shared cacheline, to by shared data:

Read A
…
Write A
…
Read A

...
Read D
…
Write D

A, B, C, D
cacheline: False sharing

example:

Memory Ordering
(aka Memory Consistency)

-- tricky but important stuff

Erik Hagersten
Uppsala University

Sweden

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 27

PDC
Summer
School
2016

The Shared Memory Programming
Model (Pthreads/OpenMP, …)

Thread Thread Thread Thread Thread Thread Thread Thread

Shared Memory

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 28

PDC
Summer
School
2016

Memory Ordering
n Coherence defines a per-datum

valuechange order
n Memory model defines the valuechange

order for all the data.

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 29

PDC
Summer
School
2016

Where Memory Models Matter
n  Flag synchronization

 (initially flag = 0 and A = 0)

 A = 1; while (flag != 1) {};
 flag = 1; X = A;
 print(X);

n  Causality (Causal correctness)

…
A = 1;
…

…
...
while (A==0) {};
B = 1;

Read A
…
…
…
while (B==0) {};
X = A;
print (X);

(Initially A = 0 and B = 0)

Trick question
What value will be printed?
q  0
q  1
q  Undefined (either 0 or 1)

Trick question
What value will be printed?
q  0
q  1
q  Undefined (either 0 or 1)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 30

PDC
Summer
School
2016

Dekker’s Algorithm

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Initially A = B = 0
 “fork”

Q: Is it possible that both A and B win?
It depends on the memory model ed!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 31

PDC
Summer
School
2016

Memory Ordering
n Defines the [observable] memory

order: If a thread has seen that A happened before
B, what order may other threads observe?

n  Is a ”contract” between the HW and SW guys

n  Without it, you can not say much about the
result of a parallel execution

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 32

PDC
Summer
School
2016

“The intuitive memory order”
Sequential Consistency (Lamport)

®  Global order achieved by interleaving all memory
accesses from different threads

®  “Programmer’s intuition is maintained”
§  Flag synchronization? Yes
§  Store causality? Yes
§  Does Dekker work? Yes

®  Unnecessarily restrictive ==> performance penalty

Thread Thread Thread Thread Thread Thread T Thread

Shared Memory
loads, stores

Shared Memory

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 33

PDC
Summer
School
2016

One implementation of SC
in dir-based coherence

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

Read X
Read A
…
Write A
Read C

B:

Read B
…
Read A

INV INV

Who has
a copy

Who has
a copy

INV

ACK ACK

Read X must complete before starting Read A

Must receive all ACKs before continuing

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 34

PDC
Summer
School
2016

“Almost intuitive memory model”
Total Store Ordering [TSO] (P. Sindhu)

®  Global interleaving [order] for all stores from different
threads (own stores excepted)

®  “Programmer’s intuition is maintained”
§  Flag synchronization? Yes
§  Store causality? Yes
§  Does Dekker work? No

®  Unnecessarily restrictive ==> performance penalty

Thread Thread Thread Thread Thread Thread T Thread

Shared Memory Shared Memory

stores loads

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 35

PDC
Summer
School
2016

Does the write
become globally
visible
before
the read is
performed?

Dekker’s Algorithm, TSO

A := 1
if (B== 0) print(“A won”)

B := 1
if (A == 0) print(“B won”)

Initially A = B = 0
 “fork”

Q: Is it possible that both A and B wins?
It depends on the memory model ed!

Left: The read (i.e., test if B==0) can bypass the store (A:=1)
Right: The read (i.e., test if A==0) can bypass the store (B:=1)
è both loads can be performed before any of the stores
è yes, it is possible that both wins
è è Dekker’s algorithm breaks

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 36

PDC
Summer
School
2016

Dekker’s Algorithm for TSO

A := 1
“Membar” or “Memory Fence”
if (B== 0) print(“A won”)

B := 1
“Membar” or “Memory Fence”
if (A == 0) print(“B won”)

Initially A = B = 0
 “fork”

Q: Is it possible that both A and B win?
It depends on the memory model ed!

Membar: The read is started after all previous stores have been ”globaly ordered”
è  behaves like SC
è  Dekker’s algorithm works!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 37

PDC
Summer
School
2016

Weak/release Consistency
(M. Dubois, K. Gharachorloo)

®  Most accesses are unordered
®  “Programmer’s intuition is not maintained”

§  Flag synchronization? No
§  Store causality? No
§  Does Dekker work? No

®  Global order only established when the
programmer explicitly inserts memory barrier
instructions

++ Better performance!!
--- Interesting bugs!!

Thread Thread Thread Thread

Shared Memory

loads
stores

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 38

PDC
Summer
School
2016

Q: What
value will

get printed?
Answer: 1

Weak/Release consistency
n  New flag synchronization needed
 A := data; while (flag != 1) {};
 membar; membar;
 flag := 1; X := A;

n  Dekker’s: same as TSO
n  Causal correctness provided for this code

…
A:=1
…

…
...
While (A==0) {}
membar
B := 1

Read A
…
…
…
While (B==0) {}
membar
Print A

Initially A = B = 0

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 39

PDC
Summer
School
2016

Learning more about memory models

Shared Memory Consistency Models: A Tutorial
by Sarita Adve, Kouroush Gharachorloo
in IEEE Computer 1996

RTFM: Read the manual of the system you are
working on!
(Different microprocessors and systems supports
different memory models.)

Issue to think about:
What code reordering may compilers really do?
Sometimes have to use ”volatile” declarations in C!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 40

PDC
Summer
School
2016

X86’s current memory model
Common view in academia: TSO

If you ask Intel:
n  Processor consistency with causual

correctness for non-atomic memory ops
n  TSO for atomic memory ops

n  Video presentation:
http://www.youtube.com/watch?v=WUfvvFD5tAA&hl=sv

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 41

PDC
Summer
School
2016

SIMD
e.g., vector
instructions

MIMD

Message-
passing

Shared
Memory

UMA NUMA COMA Fine-
grained

Coarse-
grained

A few words about SIMD

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 42

PDC
Summer
School
2016

Examples of vector instructions

...

A:

B:

C:

D:

E:

SSE_MUL D, B, A

x x x x

Vector Regs

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 43

PDC
Summer
School
2016

x86 Vector instructions
n  MMX: 64 bit vectors (e.g., two 32bit ops)
n  SSE: 128 bit vectors(e.g., four 32 bit ops)
n  AVX: 256 bit vectors(e.g., eight 32 bit ops)
 (in Sandy Bridge, ~y2011)

n  Xeon Phi: 512 bit vectors

n  GPUs: Good at vector-ish instructions
 A bit more general for ”diverge code”

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 44

PDC
Summer
School
2016

SIMD
e.g., vector
instructions

MIMD

Message-
passing

Shared
Memory

UMA NUMA COMA Fine-
grained

Coarse-
grained

A few words about Message-passing

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 45

PDC
Summer
School
2016

A modern ”supercomputer”

Multicore

Mem
I/O

NA

Multicore

Mem
I/O

NA

Multicore

Mem
I/O

NA

Multicore

Mem
I/O

NA

Switch

...

X = vec[i];
MPI_send(X, to_dest);
...

...
MPI_receive(Y, from_source;
print (Y);

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 46

PDC
Summer
School
2016

MPI inside a multicore?
n  MPI can be implemented on top of coherent

shared memory
n  Coherent shard memory can not [cheaply] be

implemented on top of MPI
n  Many options for parallelism within a ”node”:

®  OpenMP
®  MPI
®  Posix threads
®  ...

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 47

PDC
Summer
School
2016

SIMD
e.g., vector
instructions

MIMD

Message-
passing

Shared
Memory

UMA NUMA COMA Fine-
grained

Coarse-
grained

A few words about simultaneously
multithreading (SMT) or “Hyper-threading”

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 48

PDC
Summer
School
2016

A 5-stage 2-way superscalar
pipeline

IF ID EX M WB

IF ID EX M WB

Reg

ALU

ALU

D

B
C

A

E One sequential
program:

L1$
…

PC

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 49

PDC
Summer
School
2016

A 5-stage superscalar pipeline

IF ID EX M WB

IF ID EX M WB

Reg

ALU

ALU

D

B
C

A

E

One sequential
program:

L1$

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 50

PDC
Summer
School
2016

A 5-stage 2-way superscalar pipeline,
Simultaneouslu Multithreaded 2-ways (SMT)

IF ID EX M WB

IF ID EX M WB

Reg

ALU

ALU

D

B
C

A

E One sequential
program:

L1$
…

PC

B

D
C

E

A

Choice

PC

Reg

Thread
Colour

”State”

”State”

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 51

PDC
Summer
School
2016

Choosing between different threads

n  Fixed interleaving (Xeon Phi, HEP 1982!!, …)
®  Each of N threads executes one instruction every

N:th cycles
®  If thread is not ready to go during its slot à bubble

n  Hardware-controlled thread scheduling
®  E.g., hardware keeps track of which threads are

ready to go (Niagra-1)
®  E.g., picks next thread to execute based on

hardware priority scheme (~Hyperthreading)
®  I-count: Chose the thread with least Instr in-flight
®  Course-grained: Run one thread until it ”blocks”

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 52

PDC
Summer
School
2016

How are we doing?

n  Create and explore locality:
a)  Spatial locality
b)  Temporal locality

n  Create and explore parallelism
a)  Instruction level parallelism (ILP)
b)  Thread level parallelism (TLP)
c)  Memory level parallelism (MLP)

n  Speculative execution
a)  Out-of-order execution
b)  Branch prediction
c)  Prefetching

ü
ü

ü
ü

