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Outline of these lectures 
1.  Processor implementations 
2.  Caches and memory system 
3.   Multiprocessors 
4.  HW optimizations 
5.  Multicore processors 
6.  SW optimizations 
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The era of the “supercomputer” 
multiprocessors in the 1990s 

n  The one with the most blinking lights wins 
n  The one with the strangest languages wins 
n  The niftier the better! 
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Focus of this 
session 

SIMD MIMD 

Message- 
passing 

Shared 
Memory 

UMA NUMA COMA Fine- 
grained 

Coarse- 
grained 

Taxomy for Architectures [Flynn] 



 
Coherent Shared Memory 

 
 

Erik Hagersten 
Uppsala University 
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Programming Model: Shared Memory 

Shared Memory 

Thread 
   pc-> 

Thread 
   pc-> 

Thread 
   pc-> 

Thread 
   pc-> 

Thread 
   pc-> 

Thread 
   pc-> 

Thread 
   pc-> 

Thread 
   pc-> 

Thread-Level Parallelism (TLP) 



Dept of  Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 7 

PDC 
Summer 
School 
2016 

Adding Caches: 
Cuts latency and memory bandwidth 

Shared Memory 

Thread 
    pc 

$ 

Thread 
    pc 

$ 

Thread 
    pc 

$ 

Thread 
    pc 

$ 

Thread 
    pc 

$ 

Thread 
    pc 

$ 

Thread 
pc 

$ 

Thread 
    pcà 

$ 
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Caches: 
Automatic Replication of Data 

Shared Memory 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
Read A 

A: 

... 
Read A 
… 
 

B: 

Read B 
… 
Read A 
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The Cache Coherent Memory System 

Shared Memory 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
 

A: 

... 
Read A 
… 
Write A 
 

B: 

Read B 
… 
Read A 

INV INV 
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The Cache Coherent $2$ 

Shared Memory 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
Read A 
 

A: 

... 
Read A 
… 
Write A 
 

B: 

Read B 
… 
Read A 
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Writeback 

Shared Memory 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
Read A 
 

A: 

... 
Read A 
… 
Write A ... 
A gets replaced 
 

B: 

Read B 
… 
Read A 



Dept of  Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 12 

PDC 
Summer 
School 
2016 

Summing up Coherence 

  Sloppy: there can be many copies 
of a datum, but only one value  

  Coherence: There is a single global 
order of value changes to each datum  

Too strong 

definition! 

  Memory order/model: Defines the 
order between accesses to many data  
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Implementing Coherence 
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S
tate 

S
tate 

”Upgrade” in snoop-based 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
 

A: 

... 
Read A 
… 
Write A 
 

B: 

Read B 
… 
Read A 

S
tate 

Per cachline  
state info 
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Cache implementation 
”8-way set-associative cache” 

Generic Cache: 

Addr  [63..0] 
MSB                               LSB 

AT S Data = 64B 

= 

Cacheline:  

... 

= = = = = = = 

mux 
Hit 

Sel way ”6” 

Data = 64B 

index 

SRAM: 

Miss 

Miss 

... 

Per cachline  
state info 
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S
tate 

S
tate 

”Upgrade” in snoop-based 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
 

A: 

... 
Read A 
… 
Write A 
 

B: 

Read B 
… 
Read A 

BusINV 

Have to  
INV 

Have to  
INV 

My 
INV S

tate 

Per cachline  
state info 
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S
tate 

S
tate 

S
tate 

Cache-to-cache in snoop-based 

Thread 

$ 

Thread 

$ 

Thread 

$ 

A: 

... 
Read A 
… 
Write A 
 

B: 

Read B 
… 
Read A 

BusRTS 

My RTS 
à wait 
for data 

Gotta 
answer 

Read A 
Read A 
… 
… 
Read A 
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S
tate 

S
tate 

S
tate 

”Upgrade” in dir-based 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
 

A: 

... 
Read A 
… 
Write A 
 

B: 

Read B 
… 
Read A 

INV INV 

Who has  
a copy 

Who has  
a copy 

INV 

ACK ACK 

ACK 
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S
tate 

S
tate 

S
tate 

Read A 
Read A 
… 
… 
Read A 
 

Cache-to-cache in dir-based 

Thread 

$ 

Thread 

$ 

Thread 

$ 

A: 

... 
Read A 
… 
Write A 
 

B: 

Read B 
… 
Read A 

Forward 

ReadRequest 

Who has  
a copy 

Who has  
a copy 

ReadDemand 
Ack 
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Directory-based coherence:  
Per-cachline info in the memory 

Thread 

$ 

Thread 

$ 

Thread 

$ 

A: B: 

Cache access Cache access Cache access 

Directory Protocol 

S
tate 

S
tate 

S
tate 

Directory 
state 
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Directory-based snooping: NUMA. 
Per-cachline info in the home node 

Thread 

$ 

Thread 

$ 

A: B: 

Cache access Cache access 

Directory Protocol 

S
tate 

S
tate 

Directory Protocol 

Interconnect 

Directory 
state 

Directory 
state 
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Multisocket 

I/F 

I/F 

100 

DRAM 

DRAM 

Coherence = Non-Uniform (NUMA)  
Coherence   
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AMD Multi-socket Architecture 
(same applies to Intel multi-sockets) 

I/O I/O 

Coherence = Non-Uniform  

L3 L3 

L3 L3 
Cpu 

Dir Dir 

Dir Dir 
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False sharing: 
Coherence is maintained with a 
cache-line granularity 

A B C D E F G H 

Read A 
Write A 
… 
… 
Read A 
 

Thread 

Read E 
… 
Write E 

Thread 

Coherence misses even though 
the threads do not share data 
”the cache line is too large” 

Cache Line 
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More Cache Lingo 
n  Capacity miss – too small cache 
n  Conflict miss – limited associativity 
n  Compulsory miss – accessing data the first time 
n  Coherence miss – I would have had the data unless 

it had been invalidated by someone else 
n  Upgrade miss (only for writes) – I would have had a 

writable copy, but gave away readable data and 
downgraded myself to read-only 

n  False sharing: Coherence/downgrade is caused by a 
shared cacheline, to by shared data:  

Read A 
… 
Write A 
… 
Read A 
 

... 
Read D 
… 
Write D 
 

A, B, C, D 
cacheline: False sharing 

example:  



Memory Ordering 
(aka Memory Consistency)  

-- tricky but important stuff 

Erik Hagersten 
Uppsala University 

Sweden 
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The Shared Memory Programming  
Model (Pthreads/OpenMP, …) 

Thread Thread Thread Thread Thread Thread Thread Thread 

Shared Memory 
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Memory Ordering 
n Coherence defines a per-datum 

valuechange order 
n Memory model defines the valuechange 

order for all the data.  
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Where Memory Models Matter 
n  Flag synchronization 

   (initially flag = 0 and A = 0 ) 
 

 ...     ... 
 A = 1;    while (flag != 1)  {}; 
 flag = 1;    X = A; 
     print(X); 

 
 

n   Causality (Causal correctness)  

… 
A = 1; 
… 

… 
... 
while (A==0) {}; 
B = 1; 
 

Read A 
…  
… 
… 
while (B==0) {}; 
X = A; 
print (X); 

(Initially A = 0 and  B = 0) 

Trick question 
What value will be printed? 
q  0 
q  1 
q  Undefined (either 0 or 1) 
 

Trick question 
What value will be printed? 
q  0 
q  1 
q  Undefined (either 0 or 1) 
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Dekker’s Algorithm 

A := 1 
if (B== 0) print(“A won”) 

B := 1 
if (A == 0)  print(“B won”) 

 
Initially A = B = 0 
         “fork” 

Q: Is it possible that both A and B win? 
It depends on the memory model ed! 
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Memory Ordering 
n Defines the [observable] memory 

order: If a thread has seen that A happened before 
B, what order may other threads observe? 

n  Is a ”contract” between the HW and SW guys 

n  Without it, you can not say much about the 
result of a parallel execution 
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“The intuitive memory order” 
Sequential Consistency (Lamport) 

®  Global order achieved by interleaving all memory 
accesses from different threads 

®  “Programmer’s intuition is maintained” 
§  Flag synchronization? Yes 
§  Store causality? Yes 
§  Does Dekker work? Yes 

®  Unnecessarily restrictive ==> performance penalty 

Thread Thread Thread Thread Thread Thread T Thread 

Shared Memory 
loads, stores 

Shared Memory 
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One implementation of SC  
in dir-based coherence 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
 

A: 

Read X 
Read A 
… 
Write A 
Read C 
 

B: 

Read B 
… 
Read A 

INV INV 

Who has  
a copy 

Who has  
a copy 

INV 

ACK ACK 

Read X must complete before starting Read A  

Must receive all ACKs before continuing 
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“Almost intuitive memory model” 
Total Store Ordering [TSO] (P. Sindhu) 

®  Global interleaving [order] for all stores from different 
threads (own stores excepted) 

®  “Programmer’s intuition is maintained” 
§  Flag synchronization? Yes 
§  Store causality? Yes 
§  Does Dekker work? No 

®  Unnecessarily restrictive ==> performance penalty 

Thread Thread Thread Thread Thread Thread T Thread 

Shared Memory Shared Memory 

stores loads 
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Does the write 
become globally 
visible 
before  
the read is  
performed? 

Dekker’s Algorithm, TSO 

A := 1 
if (B== 0) print(“A won”) 

B := 1 
if (A == 0)  print(“B won”) 

 
Initially A = B = 0 
         “fork” 

Q: Is it possible that both A and B wins? 
It depends on the memory model ed! 

Left: The read (i.e., test if B==0) can bypass the store (A:=1) 
Right: The read (i.e., test if A==0) can bypass the store (B:=1) 
è both loads can be performed before any of the stores  
è yes, it is possible that both wins   
è è Dekker’s algorithm breaks 
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Dekker’s Algorithm for TSO 

A := 1 
“Membar” or “Memory Fence” 
if (B== 0) print(“A won”) 

B := 1 
“Membar” or “Memory Fence” 
if (A == 0)  print(“B won”) 

 
Initially A = B = 0 
         “fork” 

Q: Is it possible that both A and B win? 
It depends on the memory model ed! 

Membar: The read is started after all previous stores have been ”globaly ordered” 
è  behaves like SC    
è  Dekker’s algorithm works! 



Dept of  Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Multiprocessors 37 

PDC 
Summer 
School 
2016 

Weak/release Consistency  
(M. Dubois, K. Gharachorloo) 

®  Most accesses are unordered 
®  “Programmer’s intuition is not maintained” 

§  Flag synchronization? No 
§  Store causality? No 
§  Does Dekker work? No 

®  Global order only established when the 
programmer explicitly inserts memory barrier 
instructions  

++ Better performance!! 
--- Interesting bugs!! 

Thread Thread Thread Thread 

Shared Memory 

loads 
stores 
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Q: What 
value will 

get printed? 
Answer: 1 

Weak/Release consistency 
n  New flag synchronization needed 
 A := data;    while (flag != 1)  {}; 
 membar;    membar; 
 flag := 1;    X := A; 

n  Dekker’s: same as TSO 
n  Causal correctness provided for this code 

… 
A:=1 
… 

… 
... 
While (A==0) {} 
membar 
B := 1 
 

Read A 
…  
… 
… 
While (B==0) {} 
membar 
Print A 

Initially A = B = 0 
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Learning more about memory models 

Shared Memory Consistency Models: A Tutorial 
by Sarita Adve, Kouroush Gharachorloo  
in IEEE Computer 1996 
 
RTFM: Read the manual of the system you are  
working on! 
(Different microprocessors and systems supports 
different memory models.) 
 
Issue to think about:  
What code reordering may compilers really do? 
Sometimes have to use ”volatile” declarations in C! 
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X86’s current memory model 
Common view in academia: TSO 

If you ask Intel:  
n  Processor consistency with causual 

correctness for non-atomic memory ops 
n  TSO for atomic memory ops 

n  Video presentation:  
http://www.youtube.com/watch?v=WUfvvFD5tAA&hl=sv 
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SIMD 
e.g., vector 
instructions 

MIMD 

Message- 
passing 

Shared 
Memory 

UMA NUMA COMA Fine- 
grained 

Coarse- 
grained 

A few words about SIMD 
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Examples of vector instructions 

... 

A: 

B: 

C: 

D: 

E: 

SSE_MUL  D, B, A 

x x x x 

Vector Regs 
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x86 Vector instructions 
n  MMX: 64 bit vectors (e.g., two 32bit ops) 
n  SSE: 128 bit vectors(e.g., four 32 bit ops) 
n  AVX: 256 bit vectors(e.g., eight 32 bit ops) 
 (in Sandy Bridge, ~y2011) 

n  Xeon Phi: 512 bit vectors 

n  GPUs:  Good at vector-ish instructions 
  A bit more general for ”diverge code” 
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SIMD 
e.g., vector 
instructions 

MIMD 

Message- 
passing 

Shared 
Memory 

UMA NUMA COMA Fine- 
grained 

Coarse- 
grained 

A few words about Message-passing 
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A modern ”supercomputer” 

Multicore 

Mem 
I/O 

NA 

Multicore 

Mem 
I/O 

NA 

Multicore 

Mem 
I/O 

NA 

Multicore 

Mem 
I/O 

NA 

Switch 

... 

X = vec[i]; 
MPI_send(X, to_dest); 
... 

... 
MPI_receive(Y, from_source; 
print (Y);  
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MPI inside a multicore? 
n  MPI can be implemented on top of coherent 

shared memory 
n  Coherent shard memory can not [cheaply] be 

implemented on top of MPI 
n  Many options for parallelism within a ”node”: 

®  OpenMP 
®  MPI 
®  Posix threads 
®  ... 
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SIMD 
e.g., vector 
instructions 

MIMD 

Message- 
passing 

Shared 
Memory 

UMA NUMA COMA Fine- 
grained 

Coarse- 
grained 

A few words about simultaneously 
multithreading (SMT) or “Hyper-threading” 
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A 5-stage 2-way superscalar 
pipeline 

IF ID EX M WB

IF ID EX M WB

Reg 

ALU 

ALU 

D 

B 
C 

A 

E One sequential  
program: 

L1$ 
… 

PC 
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A 5-stage superscalar pipeline 

IF ID EX M WB

IF ID EX M WB

Reg 

ALU 

ALU 

D 

B 
C 

A 

E 

One sequential  
program: 

L1$ 
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A 5-stage 2-way superscalar pipeline, 
Simultaneouslu Multithreaded 2-ways (SMT) 

IF ID EX M WB

IF ID EX M WB

Reg 

ALU 

ALU 

D 

B 
C 

A 

E One sequential  
program: 

L1$ 
… 

PC 

B 

D 
C 

E 

A 

Choice 

PC 

Reg 

Thread 
Colour 

”State” 

”State” 
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Choosing between different threads 

n  Fixed interleaving (Xeon Phi, HEP 1982!!, …)  
®  Each of N threads executes one instruction every 

N:th cycles  
®  If thread is not ready to go during its slot à bubble 

n  Hardware-controlled thread scheduling 
®  E.g., hardware keeps track of which threads are 

ready to go (Niagra-1) 
®  E.g., picks next thread to execute based on 

hardware priority scheme (~Hyperthreading) 
®  I-count: Chose the thread with least Instr in-flight 
®  Course-grained: Run one thread until it ”blocks” 
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How are we doing? 

n  Create and explore locality: 
a)  Spatial locality  
b)  Temporal locality 

n  Create and explore parallelism 
a)  Instruction level parallelism (ILP) 
b)  Thread level parallelism (TLP) 
c)  Memory level parallelism (MLP) 

n  Speculative execution 
a)  Out-of-order execution 
b)  Branch prediction 
c)  Prefetching 

 

ü 
ü 

ü 
ü 


