
Concepts and Algorithms for Computational
Science and Engineering

High Performance Computing, PDC Summer School 2016

Michael Hanke

16 August 2016

1 (72)

Outline

What is Computational Science and Engineering

The CSE Pipeline

Obstacles to Efficiency

Parallelization Strategies

Summary

2 (72)

Computational Science and Engineering

“CSE is devoted to the development and use of computational
methods for scientific discovery in all branches of the sciences and
for the advancement of innovation in engineering and technology. It
is a broad and vitally important field encompassing methods of
HPC and playing a central role in the data revolution.”

Future directions in CSE education and research, Report of the SIAM-EESI
Workshop, August 2014 3 (72)

Numerical Analysis

I Original term since the early 1950s
I Today it denotes

I Developemnt of numerical algorithms from given mathematical
models

I Analysis of these algorithms: consistency, stability,
convergence, order of accuracy, computational complexity
(Example: error estimate |u(xj)−uj | ≤ Chp, j = 1,2, . . . ,J)

4 (72)

Virtual Prototyping

The term virtual prototyping is often used in industry to describe
the use of simulation, data base techniques and visualization for

I Understanding
I Verification
I Planning, optimization and control.

5 (72)

CSE: Medicine

Design and optimization of implants (CFD, FSI); Electrical
activation of the human heart (courtesy Rolf Krause)

6 (72)

CSE: Automotive Industry

7 (72)

CSE: 3D Printing Process

8 (72)

CSE: What’s to Come

I Examples from life sciences (molecular biology), material
science (phase transition in welding), fluid dynamics
(turbulence)

I Level of peta-scale computing: break trough for CSE
I We are on the road to exa-scale computations

9 (72)

What’s to Come (cont)

I Ubiquitous parallelism
I Contention in clock speed and architectural enhancements
I Pervasive computing (imbedded systems)

I CSE and Data Science: big data analysis
I “Big data”: Often statistical methods

10 (72)

Evolution of Scientific Computing

The development of scientific computing is based on progress in
computer technology: Moore’s law

11 (72)

Evolution of Scientific Computing (cont)

The development of scientific computing is also based on progress
in algorithms and software.

Note: Compiler technology

12 (72)

HPC “more than flops/second”

I Other architecture aspects: processor, communication,
memory hierarchy, etc

I Overall computational environment: software, computer, grid,
cloud

I The relevant metrics for measuring speed is elapsed time from
submission to completion of execution!

13 (72)

The CSE Pipeline

14 (72)

The CSE Pipeline (cont)

1. Conceptual model (e.g., identification of physics...)
2. Mathematical model
3. Algorithmic model (often, numerical algorithm)
4. Computer code
5. Output, visualization
6. Validation, verification, feedback

15 (72)

1 to 2

I Formulation of quantitative mathematical model (e.g.,
differential equation, integral equation, etc)

I Model derivation
I Physically based modelling
I Mathematical model reduction
I Pre-determined model structure (e.g. neural nets)

I Analysis of models, existence, uniqueness, continuous
dependence on data, consistency with respect to relevant
properties (e.g. energy conservation)

I uncertainty quantification (UQ) — today often in silico
I Matching model to computational resources

16 (72)

2 to 3

I Formulation of a numerical algorithm that is appropriate for
the mathematical model and the computational resources

I Derivation typically in two steps:
I infinite to finite dimensional model (discretization)
I algorithm for the finite dimensional model (linear system

solver, Newton’s method, multigrid etc)

I Build in adaptivity and error estimation
I Analysis of algorithm

I Stability, accuracy, convergence etc
I Consistent with special properties of the mathematical model
I Computational complexity, fit to computer architecture

17 (72)

3 to 4

I Development of a computer code including libraries etc
I Structure code and coding process for easy validation,

debugging and collaborative work
I Optimize message passing, threading and/or “help” the

compiler to optimize cache handling and parallelization (e.g.,
automatic vectorization)

I Careful debugging of individual modules
I Reuse software, from BLAS and up

18 (72)

4 to 5

I Typically all done by the computer system
I Could include interactive steps of computational steering,

collaborative work and interactive visualization
I Output could be input to other systems for further

computation, e.g., optimization loop, model identification or
control

I Design output to support understanding of results and to aid
in validation and debugging of the earlier steps

19 (72)

The Complete Pipeline

I Verify that the code follows specifications
I Feedback to validate and optimize the computational pipeline.

Check output with respect to
I measured data
I known model properties
I results from known test cases and other codes
I variation in parameters (e.g. mesh refinement)

I Find efficiency bottlenecks and try to eliminate them using all
steps in the CSE pipeline

20 (72)

Interaction of CSE Components

21 (72)

General Remarks

I The computational pipeline may be part of larger simulation,
as i.e. the simulation step in an optimization

I Only part of pipeline may be relevant in a particular case as,
i.e. in visualization of measured data

I Computations may be needed to define the mathematical
model (identification)

I Strategy in development may vary
I Will the code be used only once or thousands of times
I Is the desired result goal oriented (i.e calculate drag of an

airplane) or is the simulation for general discovery

22 (72)

General Remarks (cont)

I Two overarching goals: accuracy and computational efficiency
I Accuracy

I Appropriate mathematical model
I (Sufficiently) Accurate numerical algorithm (discretization,

solver, truncation and round off errors)
I Verification, validation, uncertainty quantification

I Computational efficiency – our focus here
I Flops, load balance, communication, architecture dependencies

23 (72)

Time Sinks: Flops
I Algorithms with minimal number of flops (often in conflict

with algorithms that are easy to distribute)
I Distribute flops to many processors
I Load balance for maximal use of processors: Amdahl’s law.

Speedup SP on P processors is restricted by
SP = P/(1+ (P−1)f) < 1/f (f - sequential part)

I Data and operation flow (GPUs)

24 (72)

Time Sinks: Data Access

I Memory access time
I Memory hierarchy, Cache strategy (depends on algorithm)
I Pipelining of operations (prefetch, GPUs)

I Node to node communication
I Use of parallelism in algorithms
I Consider architecture of interconnect (i. e. multicore

processors)
I Consider both latency and bandwidth

25 (72)

Parallel Computing: The Beginning (1950)

Computational office at North American Aviation, Los Angeles

26 (72)

Communication: Increasing Importance

Annual improvement: Moore’s law “predicts” 59% per annum. This
is what we observe:

Time/flop
59%

bandwidth latency
network 26% 15%
DRAM 23% 5%

I Communication cost (time, energy) relative to cost for
arithmetic growth for every new computer generation

I Exascale: paradigm shift time/flop <‌< 1/bandwidth <‌<
latency

I Communication: L1 – L2 – DRAM – Network

27 (72)

Communication and Exascale

28 (72)

Hardware Aspects for Efficient Algorithms and Software:
Single Core

I Instruction pipelining
I Superscalar execution
I Vectorization
I Branches and branch prediction
I Cores may have their own cache memory
I Memory access delay
I Prefetching (uniform memory access)
I Multithreading (each core may need several threads to hide

memory access latency)

29 (72)

Hardware Aspects: Node

I Several cores are on a chip
I Several cores may share cache memory
I Process affinity (context switching)
I Memory access bottlenecks may occur
I Memory pinning may be essential
I Nodes may be equipped with accelerators (e.g., graphic cards)
I Programming paradigm: suited for shared memory algorithms

30 (72)

Hardware Aspects: Cluster

I Thousands of nodes are connected by a fast network
I Different network topologies
I Often network has hierarchical structure itself
I High latencies require message aggregation
I Low bandwidth
I Pragramming paradigm: suited for distributed memory

algorithms

31 (72)

Why Is Parallel Programming Interesting?

I A well behaved single processor algorithm may behave poorly
on a parallel computer, and may need to be reformulated
numerically

I There is no magic compiler that can turn a serial program into
an efficient program all the time and on all machines

I Performance programming involving low-level details: heavily
application dependent

I Irregularity in the computation and its data structures forces us
to think even harder

I Users don’t start from scratch — they reuse old code.
Poorly structured code, or code structured for older
architectures can entail costly reprogramming

32 (72)

Simple Addition Example

I A very large number N of values an shall be added on P
processors:

S =
N

∑
n=1

an =
P−1

∑
p=0

∑
n∈Ip

an =
P−1

∑
p=0

ωp

I Global summation: Example for P = 8

s = ω0 + ω1︸ ︷︷ ︸+ω2 + ω3︸ ︷︷ ︸︸ ︷︷ ︸+ω4 + ω5︸ ︷︷ ︸+ω6 + ω7︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
s

33 (72)

Global Summation

34 (72)

Realization

I Assume that P = 2D is a power of 2. On process p, the
program reads:

s = ωp;
for d = 0:D-1

q = bitflip(p,d);
send(s,q);
receive(h,q);
s = s+h;

end

I The bitflip operation inverts bit number d in the binary
representation of p.

35 (72)

Comments

I After execution of the program, every processor contains s
I Even if the number of flops is larger than theoretically

necessary, the execution time compared to
summation+broadcast is (much) shorter.

I Communication model: tcomm = tlatency +wtdata (one message
of length w)

I Execution time: Tp = (2Ip−1)ta + logP(tlatency + tdata + ta)

I Speedup

SP ≈ P
1

1+ P
N logP tlatency

ta

I Good speedup only if P � N

36 (72)

Flops vs Accuracy

The main reasons for high computational cost (flops) in scientific
computing are high dimensions and multi-scale phenomena. The
smallest scales must be represented over the distance of the largest
scales.

37 (72)

Flops vs Accuracy (cont)
Let the largest scale (or, wavelength of the lowest frequency) be 1
and the smallest scale be ε .Then:

I Let N(ε,δ) be the number of unknowns needed for a given
accuracy in 1D:

Typically, N(ε,δ)∼ Cδ ε−1.
I If r denotes the computational cost per unknown (e.g.

Gaussuian elimination gives r = 3, multigrid r = 1) and d the
dimension of the problem, then

#op = O(N(ε,δ)dr) = O(ε
−dr)

I In the best case it holds #op = O(ε−d): atomistic simulation
cannot be used directly for system scales. 38 (72)

Recommendations

I The problem of large d and small ε must be handled already
in the mathematical model. Use effective or averaged equation
whenever possible.

I For obtaining r = 1 (or close) use efficient methods as i.e.
multigrid instead of Gaussian elimination. (Note that multigrid
increases connectivity over simpler iteration algorithms and
thus the communication cost in the simulation)

I An higher order numerical method (more accurate) requires
lower N than a lower order in order to get the same accuracy
in the result.

39 (72)

HPC Remarks

I For a given number of flops the overall computing time can be
reduced by concurrent computing, load balancing, ordering and
types of operations (* vs /), memory and communication
strategies.

I Efficient distributed computation requires distributed
algorithms and sometimes even modified mathematical models.

I The numerical algorithm also effects the possibility to write
codes that optimally uses locality. In many cases, more flops
give less execution time!

I All steps in scientific computing pipeline are coupled and must
be handled as such!

40 (72)

Model and Algorithm: Effect on Parallelism

I Differential equations (local processes)
I Integral equations (global processes)
I Monte Carlo (direct simulation of stochastic processes)
I Optimization
I Sorting, searching, etc.
I Graph algorithms, etc.

You can never expect to construct an efficient software working
against the physics of your problem!

41 (72)

Data Parallelism

I A large number of different data items are subjected to
identical or similar processing all in parallel

I Example: rank sort

42 (72)

Data Partitioning

I Special type of data parallelism
I The data space is naturally partitioned into adjacent regions
I Each region is operated on in parallel by a different processor
I Examples: many numerical algorithms, image processing

43 (72)

Relaxed Algorithm

I Also known as embarrassingly parallel
I Each process computes in a self-sufficient manner with no

synchronization or communication between processes
I Examples: rank sort, Monte Carlo algorithms, ray tracing

44 (72)

An Early Example of a Relaxed Algorithm

Veterans Bureau Calculations 1925(?)
45 (72)

Synchronous Iteration

I Each processor performs the same iterative computation on a
different portion of data

I However, the processors must be synchronized at the end of
each iteration

I Examples: many numerical algorithms

46 (72)

Replicated Workers

I A central pool of similar tasks is maintained
I A number of worker processes retrieve tasks from the pool
I The computations ends when the task pool is empty
I Examples: combinatorial problems, data base queries

47 (72)

Pipelined Computation

I The processes are arranged in a structure
I Each process performs a certain phase of the computation
I Example: microprocessors

48 (72)

Capturing the Physical Parallelism: Focus on Differential
equations

I A large share of computations is devoted to solving differential
equations.

I DEs have many applications in all fields of science and
engineering.

I Properties:
I Time: This is a sequential process (causality)
I Space: concurrent processes (we can expect potential for

parallelisation)

I Classification of algorithm according to different degrees of
paralelism

49 (72)

ODEs: Initial Value Problems

I Typical applications: Molecular dynamics, electriacal circuit,
chemical reactions, astrophysics, rigid body dynamics

I Typical form
d
dt

y = f (t,y), y(t0) = y0

I Causality is an obstacle to concurrent computing

50 (72)

Difficulties in Parallelization

I Typical algorithm

yn ≈ y(tn), tn = n∆t + t0
yn+1 = F (yn,yn−1, . . . ,yn−r , tn), n = r , r +1, . . .

I Standard: sequential evaluation, no parallelism: yn must be
known before yn+1 can be computed.

I Options for parallelizations:
I Parallel evaluation of F (efficient for large dimensions)
I Special structure of F

51 (72)

Examples: Special Structure

d
dt

y = f (t,y), y(t0) = y0

(a) f = εg(y , t) +h(t)

(b) f = ε−1g(y , t)

(a) Very weak dependence on y (f mostly known)
(b) Very strong dependence on y (history not important -
transients)

52 (72)

Special Structures (a)

I Rewrite the ODE as

y(t) = y0 +
∫ t

t0
h(τ)dτ + ε

∫ t

t0
g(y(τ),τ)dτ.

I Picard iteration will converge fast:

y (m+1)(t) = y0 +
∫ t

t0
h(τ)dτ + ε

∫ t

t0
g(y (m)(τ),τ)dτ

I Waveform relaxation: integrals can be evaluated in parallel,
time interval can be split in subintervals. This leads to a
pipelined parallelism.

53 (72)

Special Structures (b)

I Assume the ODE to be scalar, apply the implicit Euler method:

yn+1 = yn + ∆tε−1g(yn+1, tn+1),

yn+1 + ∆tε−1g(yn+1, tn+1) = yn

I The latter is a contraction for ∂g(y , t)/∂y < 0 (the more
“contracting” the smaller ε)

I Parareal algorithm: Multiple shooting with independent
subintervals.

I This is a boundary value method applied to an initial value
problem!

54 (72)

PDEs: Evolution Problems

I Typical applications
I All processes with local dependence
I Examples: continuum and quantum mechanics,

electromagnetics, meteorology, geophysics, financial models,..

I Typical form

∂

∂ t
u = f (∇x ,u,x , t) + IC +BC

I Natural concurrency in space: Domain Decomposition

55 (72)

First Generation Methods: Explicit in Time

I A partial differential operator is local.
I Hence, apply a local discretization.
I Explicit: New grid values depend only on older neighbors:

un
j ≈ u(xj , tn)

un+1
j = F (un

j+r , . . . ,u
n
j−r , tn)

56 (72)

Spatial Domain Decomposition

Distribute data (grid points, cells) to different processors

57 (72)

Domain Decomposition (cont)

I Each process needs values found on neighboring processes
I Use ghost cells,

I Circles: local grid points
I Crosses: ghost points

58 (72)

Domain Decomposition (cont)

I Scaling in 3D: number of interior points in block is O(N3)

I number of block boundary points is O(N2)

I O(N3) related to flops, O(N2) related to communication
I High efficiency for large problem sizes

I Overlapping DD for broader stencils and for multiple time
steps between message passing (reduces latency effects)

I Further DD for reduced cache misses and for multicore
I For DD: connectivity in computational stencils is important

not physical distance

59 (72)

Second Generation Methods: Implicit

I Explicit algorithm often have severe time step limitations due
to stability requirements

I Implicit algorithms (a system of equations needs to be solved in
each time step) typically have much less time step limitations

I Heat equation example:
I explicit time step constraints ∆t ≤ C∆x2

I implicit Crank-Nicolson has no constraints

60 (72)

Implicit Algorithms

I The implicit step typically implies global coupling (all
unknowns are coupled in each time step)

I Efficient if the signal speed is high or infinite (parabolic
equations, hyperbolic multiscale equation, stiff problems)

I Similar solution strategy as in steady state problems (elliptic
boundary value problems)

I Basic algorithmic component: fast parallel solver for systems
of linear equations

I Parallel Gaussian elimination (often in existing library)
I As step in nonlinear iteration (Newton’s method)
I See also third generation iterative methods; multigrid, Krylov

type methods

61 (72)

Stationary Problems, Elliptic Equations

I Stationary problems do not correspond to evolution processes
(or evolution as time goes to infinity)

I Typical types of equations: elliptic equations, boundary
integral equations, minimization problems

I Model problem: Laplace equation:

∇
2u(x) = 0, x ∈ Ω

u(x) = g(x), x ∈ ∂ Ω

62 (72)

Stationary Problems (cont)

I Discretization (FDM, FEM, quadrature,..) results in a linear or
nonlinear system of equations

I Differential equations: sparse systems
I Integral equations: dense systems

I Existing software, for example ScaLAPACK (linear algebra
software for distributed computing), requires special
distribution of data, PBLAS, PETSc, etc.

I Hot research topic: rewrite linear algebra routines for reduced
communication and new hardware architechtures

63 (72)

Gaussian Elimination

I Standard domain decomposition or block decomposition with
regular Gaussian elimination leads to inefficient load balance.

I Choose a good pivoting strategy/data distribution (nontrivial!)
I The time for backward subtitution may be longer than that of

LU-decomposition!

64 (72)

Third Generation Algorithms

I First generation algorithms are easy to parallelize but may
require many flops

I Second generation algorithms require coupling of all unknowns
(solution of system of equations) at each time level

I Third generation algorithms introduces coupling in a more
complex way (hierarchical methods)

I They are constructed to provide an efficient global coupling
I Examples: multigrid (MG), fast mulipole (FMM) and fast

Fourier transform (FFT) methods

65 (72)

Towards Multigrid Methods

Application of Gauss-Seidel iteration to a discrete Poisson equation:
Error plot after 0, 3, 25 iteration

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

66 (72)

Multigrid Methods

67 (72)

Multigrid Methods(cont)

I Efficient global coupling via interpolation to coarser grids
I Iteration with simple explicit local operator a few times on

each grid level (compare explicit methods)
I Compute residual (error in equation) and use in correction at

coarser grid level
I From O(N3) (Gaussian elimination) to O(N) computational

complexity

I Multigrid can also be used on unstructured grids and even on
matrix problems without grids (algebraic multigrid)

I Load balancing (Amdahl’s law) and increased communication
at coarse grid levels are difficulties in parallelization

68 (72)

Fast Multipole Method (FMM)
I Application area: Dense problems (boundary integral

equations, molecular dynamics, similar)
I Point to point interaction requires O(N2) operations. FMM

reduces the computational complexity to O(N)

I Can be seen as fast matrix-vector multiply (low-rank
approximations: A = BCD, dimC � dimA)

I Simplified far field interaction: Coulomb forces

69 (72)

FMM (cont)

I Simplified far field interaction – compression
I Near field: explicit algorithm

70 (72)

Fast Fourier Transform (FFT)

ck =
1
N

N−1

∑
j=0

ω
jk fj , ω = e2π i/N

I FFT (Cooley and Tukey) is a divide-and-conquer algorithm: A
DFT of dimension N corresponds to a combination of two
DFTs of dimansion N/2.

I FFT reduces the O(N2) computation to O(N logN)

I Multidimensional FFT quite difficult to parallelize
I Typically, there exists efficient software (FFTW)
I Dense matrix multiply can be seen as a product of sparse

matrix multiplies

c = Wf = W1W2 · · ·WJ f

71 (72)

Summary

I Consider all steps in the CSE pipeline for validation and
computational efficiency

I Consider potential concurrency and locality in the physical and
mathematical models when designing the parallel
computational algorithm

I Balance the potential for efficient parallel implementation of
simple numerical methods versus the reduced number of flops
of more complex numerical methods.

I In algorithm design use simple model for
latency-bandwidth-flop ratios, load balancing, memory access
cost, etc.

72 (72)

	What is Computational Science and Engineering
	The CSE Pipeline
	Obstacles to Efficiency
	Parallelization Strategies
	Summary

