Advanced MPI

Erwin Laure
Director PDC

What we know already

m Everything to write typical MPI programs
m Program structure
m Point-to-point communication
s Communication modes
m Blocking/non-blocking communication
m Collective Communication
m Data types
m Groups and communicators
m Performance considerations

25/08/16

MPI provides additional, advanced features

Virtual topologies

MPI-10

One-sided communication
Profiling Interface

Very useful in special cases — go beyond an introductory
lecture

We will touch these issues only on the surface

MPI Profiling Interface

25/08/16

25/08/16

Profiling Interface Overview

m To understand program performance it is important to
understand what the program is actually doing

m Simple printf’s are not sufficient to understand the
complex behavior of message passing programs
m Where does synchronization occur?
m Which process is waiting for input when?
m Etc.

A side note: Timing in MPI

m To simply understand how long a program/a certain part
of a program took MPI provides an interface to system

timer:

double MPI Wtime();
DOUBLE PRECISION MPI WTIME/()

m Timing resolution can be explored by

Double MPI Wtick();
= Resolution on the Cray is 1 microsecond

m Not enough to understand complex behavior

Profiling Interface

m MPI allows to log certain events to a log file that can be

analyzed post-mortem

m Part of the MPI| MultiProcessing Environment

m Prefix MPE

m Tracing Library This traces all MPI calls. Each MPI call is
preceded by a line that contains the rank in MPI_COMM_WORLD
of the calling process, and followed by another line indicating that

the call has completed..

= Animation Library This is a simple form of real-time program

animation and requires X window routines.

m Logging Library This is the most useful and widely used profiling
libraries in MPE. They form the basis to generate log files from
user MPI programs. There are currently 3 different log file formats

allowed in MPE.

MPI Profiling Interface

= You normally don’t instrument and log events in your MPI

program directly

m MPI provides a mechanism for tool developer to
dynamically replace (at link time) standard MPI routines

with instrumented ones through a nameshift

m Each MPI call is also defined as PMPI

MPI_Send MPI_Send

PP I_Send LT

MPI Bcast

MPI_Send
PMPI_Send

MPI Bcast

25/08/16

25/08/16

Using MPI Profiling

m Link against profiled MPI implementation
m This will produce a trace file

m Use performance tools (see performance lecture) to
analyze the data

MPI application

Time 1151615

REDRAW J7 Comm _{ Recvy _fSend _fFlag J7 Color ﬁl il Ll ﬂ] 2' m 9

Virtual Topologies

Ordering of Processes

m So far we have worked with a flat process space
= RankO ... n-1

m Many application have however an inherent structure of
their data
m E.g. 2D or 3D matrices

m Likewise, the underlying network has a specific structure
m E.g. fat tree, 3d torus, dragonfly

m Can we take advantage of this and map processes in a
similar fashion?

11

Example — Simple (flat) topology

1 n
1

.. decompose into p
original rxn submatrices

mxn matrix

[

(p-1)*r+1

m=p*r

12

25/08/16

Example — 2D Topology

s s+ @rs+1 n=qss

(qu)
decompose
. into pxq array (1,1) (1,9)
original of rxs submatrices

mxn matrix

(p-1)xr+1
.

m=p#r

» Can still use flat process space but requires tedious and
error prone mapping 11

MPI Virtual Topologies

m MPI provides 2 types of virtual topologies
m Cartesian
m Graphs

m Cartesian topology (generalization of a grid function)
m Each process is connected to its neighbors in a virtual grid
m Boundaries can be cyclic (or not)

m Processes are identified by (discrete) Cartesian coordinates
+ Eg. xy,z

m Graph topology
m Describe communication patterns by means of graphs
m The most general description of communication patterns

= Not covered here
14

25/08/16

Benefits of Virtual Topologies

m Convenient process naming

Naming scheme to fit communication pattern

Simplifies writing code

Can allow MPI to optimize communications
m Vendors can optimize mappings on their network topology

Used in Neighborhood Collectives
= New MPI3 feature

15

How do Virt. Topologies work?
m Creating a virtual topology produces a new communicator

m MPI provides mapping functions between the serial
process enumeration and the virtual topology

m Mapping functions compute processor ranks based on the
topology naming scheme

Virtual Grid
0,0 (0) 0,1 (1)

1,0(2) 1,1(3)

2,0(4) 2,1(5)

16

25/08/16

Main Cartesian Commands

MPI_CART_CREATE: creates a new communicator using a
Cartesian topology

MPI_CART_COORDS: returns the corresponding Cartesian
coordinates of a (linear) rank in a Cartesian
communicator.

MPI_CART_RANK: returns the corresponding process rank
of the Cartesian coordinates of a Cartesian communicator.

MPI_CART_SUB: creates new communicators for subgrids
of up to (N-1) dimensions from an N-dimensional
Cartesian grid.

MPI_CART_SHIFT: finds the resulting source and
destination ranks, given a shift direction and amount. |,

MPI_CART_CREATE

int MPI_Cart create(MPI_Comm old comm, int ndims,

int *dim size, int *periods, int reorder,
MPI_ Comm *new_comm)

MPI_CART CREATE(OLD_COMM, NDIMS, DIM SIZE, PERIODS,

REORDER, NEW_COMM, IERR)

periods: Array of size ndims specifying periodicity status of each

dimension

reorder: Wwhether process rank reordering by MPI is permitted
New comm: Communicator handle

18

25/08/16

Example

#include "mpi.h"
MPI_Comm old_comm, new_comm;

int ndims, reorder, periods[2], dim size[2];

old comm = MPI COMM WORLD;

ndims = 2; /* 2-D matrix/grid */

dim size[0] = 3; /* rows */

dim size[l] = 2; /* columns */

periods[0] = 1; /* row periodic (each column forms a
ring) */

periods[1l] = 0; /* columns nonperiodic */

reorder = 1; /* allows processes reordered for

efficiency */

MPI_Cart_create(old_comm, ndims, dim_size,

periods, reorder, &new_comm);

19
Example Cont’'d
-1,0 (4) -1,1 (5)
0,-1(-1) 0,0 (0) 0,1 (1) 0,2(-1)
1,-1(-1) 1,0(2) 1,1 (3) 1,2 (-1
2,-1(-1) 2,0 (4) 2,1 (5) 2,2 (-1,
3,0 (0) 3,1 (1)
periods(0)=.true.;periods(1)=.false. 1

25/08/16

10

25/08/16

Note

m MPI CART_CREATE is a collective communication function so it must
be called by all processes in the group. Like other collective
communication routines, MPI_CART_ CREATE uses blocking
communication. However, it is not required to be synchronized among
processes in the group and hence is implementation dependent.

m [f the total size of the Cartesian grid is smaller than available

processes, those processes not included in the new communicator
will return MPI_COMM_NULL.

m If the total size of the Cartesian grid is larger than available
processes, the call results in error.

21

MPI-10

22

11

Common Ways of Doing I/O in Parallel Programs

m Sequential 1/O:
m All processes send data to process 0, and 0 writes it to the file

23

Pros and Cons of Sequential 1/0

m Pros:
m parallel machine may support I/O from only one process
* (e.g., no common file system)
m Some |/O libraries (e.g. HDF-4, NetCDF) not parallel
resulting single file is handy for £tp, mv
big blocks improve performance
short distance from original, serial code

m Cons:

m lack of parallelism limits scalability, performance (single node
bottleneck)

24

25/08/16

12

Another Way

m Each process writes to a separate file

m Pros:
m parallelism, high performance
m Cons:
= |ots of small files to manage
m (difficult to read back data from different number of processes
m Lots of requests can make trouble to the file system

25

What is Parallel 1/0?

m Multiple processes of a parallel program accessing data
(reading or writing) from a common file

FILE
L«QW%«# ﬂ—’l
PIO PII PIZ P(n-1)

26

25/08/16

13

Why Parallel I/07?

m Non-parallel I/O is simple but
m Poor performance (single process writes to one file) or
m Awkward and not interoperable with other tools (each process
writes a separate file)

m Parallel I/0
= Provides high performance
m Can provide a single file that can be used with other tools (such as
visualization programs)

27

What is MPI-10

m /O interface specification for use in MPI applications

m Data model is a stream of bytes in a file
m Same as POSIX and stdio

m Features

Noncontiguous 1/0O with MPI datatypes and file views
Collective 1/0

Nonblocking 1/0

Language bindings

28

25/08/16

14

MPI File Structure

m MPI defines how multiple processes access and modify
data in a shared file.

m Necessary to thi
this file

= Similar to how derivetrv
memory

m MPI-IO works wit
datatypes
m Derived datatypes are preferred because of performance benefits
m A view defines the current set of data, visible and
accessible, from an open file.

m Each process has its own view of the shared file that defines what
data it can access.

m A view can be changed by the user during program execution.
29

One big file access instead of many
small ones

(see e.g. http://www.mcs.anl.gov/
~thakur/dtype/)

ole datatypes and derived

Why Derived Data Types?

-E

P4 | P5 | P6 | P7

P8 | P9 | P10 | P11

P12 | P13 | P14 | p15

P4 | P5|P6|P7|P4a|P5|P6|P7|P4|P5

30

25/08/16

15

Essential Concepts

m Displacement
m describes where to start in the file
m Elementary datatype (etype)
m the type of data that is to be written or read
m Basic or derived datatype
m Filetype
m the pattern of how the data is partitioned in the file

m A filetype is a defined sequence of etypes, which can have data or
be considered blank

filetype I:v I

data holes

31

Example: File views

process 0 ileype [N W[1]
process Lilepe [T || [
process 2 filepe [T[]

process 3 filetype | | ‘ ‘ | | |

displacement

‘Jﬂ

32

25/08/16

16

25/08/16

Simple Example

MPI File fh;

MPI_Status status;

MPI Comm_rank (MPI_COMM WORLD, &rank);
MPI Comm_ size (MPI_COMM WORLD, &nprocs);
bufsize = FILESIZE/nprocs;

nints = bufsize/sizeof (int) ;

MPI File open(MPI_COMM WORLD, "/pfs/datafile",
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);
MPI File seek(fh, rank * bufsize, MPI_SEEK SET);
MPI File read(fh, buf, nikxgs, MPI_INT, &status);
MPI File close(&fh);

33

More about MPI-IO

m See for instance

www.npaci.edu/ahm2002/ahm_ppt/Parallel_I0_MPI_2.ppt
Rajeev Thakur. Mathematics and Computer Science
Division. Argonne National Laboratory

34

17

25/08/16

One-sided Communication

35

Recap: Point-to-point Communication

m Both sender and receiver must issue matching MPI calls
= Depending on buffering semantics may require handshake

m Sometimes it is difficult to know in advance when
messages have to be sent/received and what
characteristics these messages have

m Could solve such situations with extra control messages
+ Requires polling, introduces overhead, and is cumbersome

m MPI provides Remote Memory Access (RMA), or one-
sided communication

m Allows one process to specify all communication parameters for
both the sender and receiver

36

18

One-sided Communication

m Communication and Synchronization are separated

Allows remote processes to
m Write into local memory (put)
m Read local memory (get)

Accessible memory areas are called “windows”

m Communication can happen without synchronization

Access to windows is synchronized

37

Looks a bit like shared-memory programming?

m |n fact, tries to bring the advantages of shared-memory
programming to MPI programs

m Effective implementation needs shared memory or
hardware support for RDMA
m Available e.g. in infiniband or Cray networks

m Need synchronization to ensure correct behavior
m Same issues as in shared-memory programming
= MPI provides window objects for synchronization

m How to implement synchronization is a great optimization
field

38

25/08/16

19

25/08/16

Window Objects
Process 0 Process 1
get
U |
Address
Space
t
Process 2 rocess 3
window
39

Main Commands

m MPI_Win_create exposes local memory to RMA
operation by other processes in a communicator
m Collective operation
= Creates window object
m MPI_Win_free deallocates window object

m MPI_Put moves data from local memory to remote
memory

m MPI_Get retrieves data from remote memory into local
memory

m MPI_Accumulate updates remote memory using local
values

m Data movement operations are non-blocking

= Subsequent synchronization on window object needed

to ensure operation is complete 1

20

Advantages of one-sided communication

m Can do multiple data transfers with a single
synchronization operation

m Bypass tag matching
m effectively precomputed as part of remote offset

m Some irregular communication patterns can be more
economically expressed

m Can be significantly faster than send/receive on systems
with hardware support for remote memory access, such
as shared memory systems

m BUT: can also be significantly slower depending on
synchronization need and access patterns!) !

Synchronization

®m Put/Get/Accumulate are non-blocking

m Subsequent synchronization on window object is needed to
ensure operations are complete

m MPI_Win_fence is used to synchronize access to windows
= Should be called before and after RMA
m Similar to a barrier in shared memory

Process 0 Process 1

MPI Win fence(win) MPI Win fence(win)
MPI Put

MPI_ Put

MPI Win fence(win) MPI Win fence(win)

42

25/08/16

21

25/08/16

New Modes in MPI-3

m PSCW Synchronization

m MPI Win post(MPI_Group group, int assert, MPI Win
win)
= Start exposure
m MPI Win start(MPI_Group group, int assert, MPI Win
win)
m Start access (may wait for post)
m MPI Win complete(MPI Win win)
= Finish access (origin only)
m MPI Win wait(MPI_Win win)
= Wait for completion (at target)

m As asynchronous as possible

43

Other MPI-3 Features

m Lock-based synchronization
m Locks window for access by one or all ranks

m Flush
s Complete all outstanding operations at target and/or origin

m Request-based put and get (Rput, Rget)
m Returns a request handle that can be tested for completion

44

22

25/08/16

Summary

m One-sided communication provides convenient means for
irregular applications

m Communication can be more efficient with proper
hardware support

m Great care needs to be put on (efficient) synchronization

45

Summary

46

23

Recap: Basic MPI Concepts

m Message buffers described by address, data type, and
count

m Processes identified by their ranks

m Communicators identifying communication contexts/
groups

47

What is not specified

m Certain aspects are not specified in the MPI standard but
left as implementation detail:
m Process startup (how to start an MPI program)
+ All what happens before MPI_Init is executed
m Richer error codes are allowed

= Message
buffering Processor 1 Processor 2

process A process B

application SEND network application RECV

system buffer system buffer

Path of a message buffered at the receiving process

25/08/16

24

Basic Send/Receive Commands

int MPI Send(void *buf, int count, MPI Datatype
dtype, int dest, int tag, MPI_Comm comm);

MPI_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, IERR)

Buffer Destination
Count Body Tag Envelope
Datatype Communicator

int MPI Recv(void *buf, int count, MPI_ Datatype
dtype, int source, int tag, MPI Comm comm, MPI Status
*status);

MPI_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM,
STATUS, IERR)
49

Wildcards

m Instead of specifying everything in the envelope explicitly,
wildcards can be used for sender and tag:

MPI ANY SOURCE and MPI_ ANY TAG
m Actual source and tag are stored in STATUS variable

C:
MPI_ Status status;

MPI Recv(b, 100, MPI_ DOUBLE,
MPI ANY SOURCE, MPI ANY TAG,
MPI COMM WORLD, &status);

source = status.MPI SOURCE;

tag = status.MPI TAG; A

25/08/16

25

A Word on Buffering

m MPI implementations typically use (internal) message
buffers

m Sending process can safely modify the sent data once it is copied
into the buffer, irrespectively of status of receiving process

m Receiving process can buffer incoming messages even if no (user
space) receiving buffer is provided, yet

m Buffers can be on both sides
Pl P2 Pl P2

send(x)! send(x)!

recv(y)

recv(y)

51

Note

This system buffer is DIFFERENT to the message buffer you
specify in the MPI_Send or MPI_Recv calls!

52

25/08/16

26

25/08/16

Blocking and Completion

m Both MPI Send and MPI_Recv are blocking
m They program only continues after they are completed

m The command is completed once it is safe to (re)use the
data

m MPI_Recv:data has been fully received

m MPI Send: can be completed even if no non-local action has
been taking place. WHY?

= Once data is copied into a send buffer MPT _Send can complete

53

Deadlocks

m Deadlocks are common (and hard to debug) errors in
message passing programs

m A deadlock occurs when two (or more) processes wait on
the progress of each other:

if(myrank == 0) {
/* Receive, then send a message */
~——— MPI Recv(b, 100, MPI DOUBLE, 1, 19, MPI COMM WORLD,
&status);
MPI Send(a, 100, MPI DOUBLE, 1, 17, MPI COMM WORLD);
}
else if(myrank == 1) {
/* Receive, then send a message */
MPI Recv(b, 100, MPI DOUBLE, 0, 17, MPI_COMM WORLD,
&status);
~—— MPI Send(a, 100, MPI DOUBLE, 0, 19, MPI COMM WORLD) ;s4

27

Help to avoid Deadlocks Cont’d

m Careful message ordering
m Always a good idea!

m Buffered communication
m But comes with (quite substantial) overhead

m Non-blocking calls

55

Non-blocking Communication

m For all send/receive calls there is a non-blocking
equivalent named I (x)send/Irecv

m Non-blocking calls will return immediately irrespectively of

the send/receive status
m They actually only initiate the action

m Actual sending/receiving of messages will be handled internally in

the MPI implementation

m Calls return a handle that allows to check the progress of sending/

receiving

m Blocking and non-blocking calls can be intermixed

m A blocking receive can match a non-blocking send and vice-versa.

56

25/08/16

28

Completion of non-blocking send/receives

int MPI Wait(MPI_Request *request, MPI Status
*status);

MPI WAIT(REQUEST, STATUS, IERR)

m MPI Wait is blocking and will only return when the
message has been sent/received

= After MPI_ Wait returns it is safe to access the data again

int MPI_Test(MPI_Request *request, int *flag,
MPI_Status *status);

MPI TEST(REQUEST, FLAG, STATUS, IERR)

m MPI_Test returns immediately

m Status of request is returned in flag (true for done, false when still

ongoing)

Collective Communication Cont’'d

m Communication involving all processes in a group (i.e. a

communicator)
m MPI-3 defines “neighborhood collectives”

m All processes in a group MUST participate to the collective

operation

m No tag mechanism, only order of program execution
= Remember that MPl messages cannot overtake another one

m Until MPI-2 all collective routines were only blocking
= With the standard completion semantics of blocking

communication — thus no guarantee there is a full synchronization

= MPI-3 introduced non-blocking collectives

+ Important difference to non-blocking p2p: no matching with non-
blocking collectives!

25/08/16

29

List of Collective Routines

m Barrier synchronization across all processes.
m Broadcast from one process to all other processes

Global reduction operations such as sum, min, max or
user-defined reductions

Gather data from all processes to one process
Scatter data from one process to all processes
All-to-all exchange of data
Scan across all processes

59

Take a deeper look

m Usage of data types

m So far we used the pre-defined data types; what if we need to deal
with more complex structures?

m Usage of communicators
= How to group processes in individual groups

m Improving Communication Performance
m Aka how to speed up programs

60

25/08/16

30

Performance Considerations

m Simple and effective performance model:
= More parameters == slower

m contig < vector < index < struct

m Some (most) MPIs are inconsistent
m But this rule is portable

m Advice to users:
= Try datatype “compression” bottom-up

61

Loss of performance

m Transfer time = latency + message length/bandwidth +
synchronization time

You cannot do much about bandwidth but

Reduce latency
m Combine many small into a single large message
m Hide communication with computation

Reduce message length
= Only communicate what is absolutely needed

Avoid synchronization

62

25/08/16

31

And finally ...

m The top MPI Errors according to

Advanced MPI: /0 and One-Sided Communication,
presented at SC2005, by William Gropp, Rusty Lusk, Rob
Ross, and Rajeev Thakur

http://www.mcs.anl.gov/research/projects/mpi/tutorial/

advmpi/sc2005-advmpi.pdf)

63

Top MPI Errors

Fortran: missing ierr argument
Fortran: missing MPI_STATUS_SIZE on status

Fortran: Using integers where MPI_OFFSET_KIND or
MPI_ADDRESS_KIND integers are required (particularly in I/O)

Fortran 90: Using array sections to nonblocking routines (e.g.,
MPI_Isend)

All: MPI_Bcast not called collectively (e.g., sender bcasts, receivers use
MPI_Recv)

All: Failure to wait (or test for completion) on MPI_Request
All: Reusing buffers on nonblocking operations

All: Using a single process for all file 1/0

All: Using MPI_Pack/Unpack instead of Datatypes

All: Unsafe use of blocking sends/receives

All: Using MPI_COMM_WORLD instead of comm in libraries
All: Not understanding implementation performance settings

All: Failing to install and use the MPI implementation according to its
documentation. 64

25/08/16

32

25/08/16

Summary

m MPI allows to write portable parallel code across many
different architectures

m Writing simple MPI programs is easy (6 commands)

m Writing efficient MPI programs is difficult

= Need also to understand MPI implementation and underlying
hardware

m Experiment with different options

= Also experiment with hybrid approaches: use Open-MP within a
nodes and MPI across nodes

65

33

