
Programming with GPU - Michael Schliephake, KTH - CSC - HPCViz

Short Introduction to
GPU programming for
Scientific Computing

2015-08-19

Michael Schliephake

Szilárd Páll
KTH – CSC – HPCViz

PDC Summer School 2016

PDC Summer School 2016 - Introduction to GPUs2

OverviewOverview

1. GPU processor characteristics
2. Practical usage scenarios

This presentation uses material from Sami Ilvonen,
provided under a Creative Commons License
http://creativecommons.org/licenses/by-nc-sa/3.0/

PDC Summer School 2016 - Introduction to GPUs3

The Debate GPU vs. CPU

PDC Summer School 2016 - Introduction to GPUs4

Processor trendsProcessor trends

PDC Summer School 2016 - Introduction to GPUs5

Modern CPUsModern CPUs

● Complex cores optimized for serial code
● Latency optimized
● Superscalar, out-of-order speculative execution with

branch prediction logic and complicated cache
hierarchies and vector units

● Single core performance is leveling off
● Multicore CPUs everywhere
● Vector units are getting larger

● Only a small part of the circuitry is doing the
actual computation!

PDC Summer School 2016 - Introduction to GPUs6

Classical SupercomputersClassical Supercomputers

● Large amount of computing nodes
● Distributed memory
● Multicore processors (tens of cores per node)

● Fast network (interconnect)
● Proprietary or Infiniband (or even Gig-Ethernet)

● Programming model
● Processes communicate via Message Passing (MPI)
● Multi-threading inside a node

PDC Summer School 2016 - Introduction to GPUs7

Power WallPower Wall

● Performance of top supercomputers is
limited by power consumption
● K Computer, 10.51 Pflops, 12.66 MW (current #5)

● Enough for a small town with ~6000 houses
● Sunway TaihuLight: 93 Pflops, 15 MW (current #1)

● More efficient computing is needed

● Current trends
● manycore + wide vector units
● accelerators

PDC Summer School 2016 - Introduction to GPUs8

Top500 June 2016Top500 June 2016

Traditional
machines:
multicore

New trends
starting to
dominate:
manycore,
accelerators

PDC Summer School 2016 - Introduction to GPUs9

AcceleratorsAccelerators

● Basic idea: move computationally intensive
tasks to a specialized unit that is

● Faster & more efficient for the selected tasks
● Specialized chips not suitable or slow for general →

purpose work
● Coprocessors not a new invention:

● Intel 8087 or 80387 (floating point), DSPs in sounds
cards (e.g. Sound Blaster AWE)

● Common in consumer electronics: A/V processing

PDC Summer School 2016 - Introduction to GPUs10

Accelerators challengesAccelerators challenges

● Designing specialized hardware is very
expensive
● Somebody has to pay for it!

 → GPUs: gamers
● Programmability challenges

● General vs specialized
● Programming model

PDC Summer School 2016 - Introduction to GPUs11

General Purpose GPUGeneral Purpose GPU

● GPU is Graphics Processing Unit that you
can find inside a display adapter.
● Optimized for computations needed in

graphics rendering
● GPUs have evolved rapidly
● Shader units became programmable

● Opened the door for GPGPU:
General-Purpose computing on Graphics
Processing Units

PDC Summer School 2016 - Introduction to GPUs12

History

Programmable Graphics Cards

● First graphics pipelines with fixed
functionality

● Transformation to programmable
device increased functionality

● Many pixel operations can be done
parallel

● Other computations were possible,
but cumbersome

Images: Courtesy David Kirk/NVIDIA and Wen-mei W. Hwu

PDC Summer School 2016 - Introduction to GPUs13

History

Programmable Graphics Cards

PDC Summer School 2016 - Introduction to GPUs14

History

G80 in Graphics Mode

PDC Summer School 2016 - Introduction to GPUs15

History

G80 in CUDA Mode

PDC Summer School 2016 - Introduction to GPUs16

GPU processor characteristics

● More transistors used for compute
● Many, simple cores
● Smaller caches
● Many memory controllers for high

bandwidth

 → massively parallel

 → throughput optimized arch

Images: Courtesy of NVIDIA and David Kirk/NVIDIA and Wen-mei W. Hwu

PDC Summer School 2016 - Introduction to GPUs17

Fermi Processor

PDC Summer School 2016 - Introduction to GPUs18

Fermi to Pascal
through Kepler and Maxwell

● More transistors:
3 7 8 15 billion→ → →

● On-chip parallelism:
512 3584 thread proc. (CUDA ”cores”)→

● Floating point throughput:
0.7/1.3 1.7/5 0.2/6.8 ~5/10 Gflops SP/DP→ → →

● Bandwidth:
178 288 288 720 Gb/s→ → →

● More/faster ”close” memory (registers, caches)
● Better efficiency, flexibility, programmability

PDC Summer School 2016 - Introduction to GPUs19

Fermi to Pascal
through Kepler and Maxwell

● More transistors:
3 7 8 15 billion→ → →

● On-chip parallelism:
512 3584 thread proc. (CUDA ”cores”)→

● Floating point throughput:
0.7/1.3 1.7/5 0.2/6.8 ~5/10 Gflops SP/DP→ → →

● Bandwidth:
178 288 288 720 Gb/s→ → →

● More/faster ”close” memory (registers, caches)
● Better efficiency, flexibility, programmability

Still (just) a GPU/accelerator!

PDC Summer School 2016 - Introduction to GPUs20

Fermi to Pascal
through Kepler and Maxwell

● More transistors:
3 7 8 15 billion→ → →

● On-chip parallelism:
512 3584 thread proc. (CUDA ”cores”)→

● Floating point throughput:
0.7/1.3 1.7/5 0.2/6.8 ~5/10 Gflops SP/DP→ → →

● Bandwidth:
178 288 288 720 Gb/s→ → →

● More/faster ”close” memory (registers, caches)
● Better efficiency, flexibility, programmability

Still (just) a GPU/accelerator!

But a fast one!*

PDC Summer School 2016 - Introduction to GPUs21

NVIDIA Tesla K80

Architecture: GK210

ALUs: 2x 2496 (2x 13 SM)

Memory interface: 384 bit

Memory bandwidth: 288 GB/s

Peak Performance: 2.91/874 Tflops DP/SP

RAM: 2x 12 GB

Tegner @PDC: 9 nodes, 2 CPUs + 1 GPU/ node

PDC Summer School 2016 - Introduction to GPUs23

Other GPU AcceleratorsOther GPU Accelerators

● AMD
● GPUs: consumer (Radeon) & professional

(Firepro)
● First HBM memory
● up to 14 Tflops SP

● APUs (integrated CPU+GPU)
● Programmed with OpenCL, HCC, C++ AMP

● Intel iGPU
● up to 1.15 Tflops (Skylake)
● eDRAM

PDC Summer School 2016 - Introduction to GPUs24

Other Accelerators
non GPU
Other Accelerators
non GPU

● Intel Xeon Phi
● Up to 72 x86 cores, wide vector units
● ≥3 Tflop/s double, ≥6 Tflop/s single precision
● MPI + threading/OpenMP programming

● FPGA
● DSP
● Custom ASICs

PDC Summer School 2016 - Introduction to GPUs25

Technical aspects of using GPUs

● Data parallel computation with
● limited need of synchronization
● limited need of operating system services
● high arithmetic intensity
● Predictable memory access patterns

● Problems
● Amdahl's Law
● Data transfer

● Approach when there is no ”ideal programming
problem”: heterogeneous applications

PDC Summer School 2016 - Introduction to GPUs26

How to use GPUsHow to use GPUs

1.Use existing GPU software

2.Use numerical libraries with GPU support

3.Programming using directives

4.Native GPU code

PDC Summer School 2016 - Introduction to GPUs27

Using existing GPU software

HOOMD, NAMD, GROMACS, GPU-HMMER, GPU-
BLAST, LAMMPS, Matlab (Toolbox), ...
Pros
● No implementation headaches for end users

Cons
● What if my science area/application is not

supported?
● Often include only limited set of functionality
● GPU versions can be in early development phase,

tricky to use efficiently

PDC Summer School 2016 - Introduction to GPUs28

Use Libraries with GPU SupportUse Libraries with GPU Support

● cuBLAS, cuFFT, cuSPARSE,
clBLAS, ViennaCL,
MAGMA, PetsC, OpenCV, Torch, etc.*

● Pros
● Easy to implement in your programs
● Algorithms in libraries usually efficient

● Cons
● Speedup limited by Amdahl’s law and there is

still transfer bottleneck
* CUDA libraries: https://developer.nvidia.com/gpu-accelerated-libraries
 OpenCL libraries: http://www.iwocl.org/resources/opencl-libraries-and-toolkits

PDC Summer School 2016 - Introduction to GPUs29

Directive-based GPU
programming

OpenACC
● Backed by Portland Group, CAPS, Cray and NVIDIA
● Compilers: PGI, Cray, CAPS HMPP (GCC partial

support)

OpenMP 4.0+: general offload directives
● More than just loop offload
● GCC, clang/llvm

https://developer.nvidia.com/gpu-accelerated-libraries
http://www.iwocl.org/resources/opencl-libraries-and-toolkits

PDC Summer School 2016 - Introduction to GPUs30

Directive Based GPU CodeDirective Based GPU Code

● OpenMP, OpenACC
● Pros

● Same code base as CPU version
● Short time to solution
● Portability is better due to different backends

● Cons
● Generated code may not be as fast as hand-

tuned CUDA

PDC Summer School 2016 - Introduction to GPUs31

Native GPU codeNative GPU code

● CUDA, OpenCL
● Pros

● Good control and best performance
● Cons

● Requires most time
● Portability (including performance)

PDC Summer School 2016 - Introduction to GPUs32

Native GPU code
in a non C/C++ project
Native GPU code
in a non C/C++ project

● Alternatives:
● Cuda Fortran (PGI)
● PyCUDA / PyOpenCL
● CUDA Python
● Alea GPU: .NET
● Julia, R,...

PDC Summer School 2016 - Introduction to GPUs33

CUDA is Nvidia specificCUDA is Nvidia specific

● OpenCL is standard
● Support for a wide range of devices

● GPUs (from mobile to server), FPGAs, CPUs,...
● Performance portability is difficult (impossible

by some measure)
● On NVIDIA hardware

● CUDA is generally faster
● Remains NVIDIA’s main programming interface
● Will evolve faster than OpenCL

PDC Summer School 2016 - Introduction to GPUs34

SummarySummary

● Power wall current trends in computing: →
many-core & accelerators

● Throughput vs latency architectures

● Accelerators are evolving fast but their use is
still challenging

● Programming GPUs
● CUDA, OpenCL
● Directive-based approaches

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

