
Programming with GPU - Michael Schliephake, KTH - CSC - HPCViz

Short Introduction to
GPU programming for 
Scientific Computing

2015-08-19

Michael Schliephake

Szilárd Páll
KTH – CSC – HPCViz

 

PDC Summer School 2016



PDC Summer School 2016 - Introduction to GPUs2

OverviewOverview

1. GPU processor characteristics
2. Practical usage scenarios

This presentation uses material from Sami Ilvonen,
provided under a Creative Commons License
http://creativecommons.org/licenses/by-nc-sa/3.0/
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The Debate GPU vs. CPU
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Processor trendsProcessor trends
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Modern CPUsModern CPUs

● Complex cores optimized for serial code
● Latency optimized
● Superscalar, out-of-order speculative execution with 

branch prediction logic and complicated cache 
hierarchies and vector units

● Single core performance is leveling off
● Multicore CPUs everywhere
● Vector units are getting larger

● Only a small part of the circuitry is doing the 
actual computation!



PDC Summer School 2016 - Introduction to GPUs6

Classical SupercomputersClassical Supercomputers

● Large amount of computing nodes
● Distributed memory
● Multicore processors (tens of cores per node)

● Fast network (interconnect)
● Proprietary or Infiniband (or even Gig-Ethernet)

● Programming model
● Processes communicate via Message Passing (MPI)
● Multi-threading inside a node
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Power WallPower Wall

● Performance of top supercomputers is 
limited by power consumption
● K Computer, 10.51 Pflops, 12.66 MW (current #5)

● Enough for a small town with ~6000 houses
● Sunway TaihuLight: 93 Pflops, 15 MW (current #1)

● More efficient computing is needed

● Current trends
● manycore + wide vector units
● accelerators
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Top500 June 2016Top500 June 2016

Traditional 
machines:
multicore

New trends 
starting to 
dominate:
manycore, 
accelerators
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AcceleratorsAccelerators

● Basic idea: move computationally intensive 
tasks to a specialized unit that is

● Faster & more efficient for the selected tasks
● Specialized chips  not suitable or slow for general →

purpose work
● Coprocessors not a new invention:

● Intel 8087 or 80387 (floating point), DSPs in sounds 
cards (e.g. Sound Blaster AWE) 

● Common in consumer electronics: A/V processing



PDC Summer School 2016 - Introduction to GPUs10

Accelerators challengesAccelerators challenges

● Designing specialized hardware is very 
expensive
● Somebody has to pay for it!

 → GPUs: gamers
● Programmability challenges

● General vs specialized
● Programming model
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General Purpose GPUGeneral Purpose GPU

● GPU is Graphics Processing Unit that you 
can find inside a display adapter.
● Optimized for computations needed in 

graphics rendering
● GPUs have evolved rapidly
● Shader units became programmable

● Opened the door for GPGPU:
General-Purpose computing on Graphics 
Processing Units
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History

Programmable Graphics Cards

● First graphics pipelines with fixed 
functionality

● Transformation to programmable 
device increased functionality

● Many pixel operations can be done 
parallel

● Other computations were possible, 
but cumbersome

Images: Courtesy David Kirk/NVIDIA and Wen-mei W. Hwu
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History

Programmable Graphics Cards
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History

G80 in Graphics Mode
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History

G80 in CUDA Mode
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GPU processor characteristics

● More transistors used for compute
● Many, simple cores
● Smaller caches
● Many memory controllers for high 

bandwidth

 → massively parallel

 → throughput optimized arch

Images: Courtesy of NVIDIA and  David Kirk/NVIDIA and Wen-mei W. Hwu
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Fermi Processor
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Fermi to Pascal
through Kepler and Maxwell

● More transistors:
3  7  8  15 billion→ → →

● On-chip parallelism:
512  3584 thread proc. (CUDA ”cores”)→

● Floating point throughput:
0.7/1.3  1.7/5  0.2/6.8  ~5/10 Gflops SP/DP→ → →

● Bandwidth:
178  288  288  720 Gb/s→ → →

● More/faster ”close” memory (registers, caches)
● Better efficiency, flexibility, programmability
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Fermi to Pascal
through Kepler and Maxwell

● More transistors:
3  7  8  15 billion→ → →

● On-chip parallelism:
512  3584 thread proc. (CUDA ”cores”)→

● Floating point throughput:
0.7/1.3  1.7/5  0.2/6.8  ~5/10 Gflops SP/DP→ → →

● Bandwidth:
178  288  288  720 Gb/s→ → →

● More/faster ”close” memory (registers, caches)
● Better efficiency, flexibility, programmability

Still (just) a GPU/accelerator!

But a fast one!*
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NVIDIA Tesla K80

Architecture: GK210

ALUs: 2x 2496 (2x 13 SM)

Memory interface: 384 bit

Memory bandwidth: 288 GB/s

Peak Performance: 2.91/874 Tflops DP/SP

RAM: 2x 12 GB

Tegner @PDC: 9 nodes, 2 CPUs + 1 GPU/ node
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Other GPU AcceleratorsOther GPU Accelerators

● AMD
● GPUs: consumer (Radeon) & professional 

(Firepro)
● First HBM memory
● up to 14 Tflops SP

● APUs (integrated CPU+GPU)
● Programmed with OpenCL, HCC, C++ AMP

● Intel iGPU
● up to 1.15 Tflops (Skylake)
● eDRAM
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Other Accelerators
non GPU
Other Accelerators
non GPU

● Intel Xeon Phi
● Up to 72 x86 cores, wide vector units
● ≥3 Tflop/s double, ≥6 Tflop/s single precision
● MPI + threading/OpenMP programming

● FPGA
● DSP
● Custom ASICs
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Technical aspects of using GPUs

● Data parallel computation with
● limited need of synchronization
● limited need of operating system services
● high arithmetic intensity
● Predictable memory access patterns

● Problems
● Amdahl's Law
● Data transfer

● Approach when there is no ”ideal programming 
problem”: heterogeneous applications
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How to use GPUsHow to use GPUs

1.Use existing GPU software

2.Use numerical libraries with GPU support

3.Programming using directives

4.Native GPU code
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Using existing GPU software

HOOMD, NAMD, GROMACS, GPU-HMMER, GPU-
BLAST, LAMMPS, Matlab (Toolbox), ...
Pros
● No implementation headaches for end users

Cons
● What if my science area/application is not 

supported?
● Often include only limited set of functionality
● GPU versions can be in early development phase, 

tricky to use efficiently
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Use Libraries with GPU SupportUse Libraries with GPU Support

● cuBLAS, cuFFT, cuSPARSE,
clBLAS, ViennaCL, 
MAGMA, PetsC, OpenCV, Torch, etc.*

● Pros
● Easy to implement in your programs
● Algorithms in libraries usually efficient

● Cons
● Speedup limited by Amdahl’s law and there is 

still transfer bottleneck
* CUDA libraries: https://developer.nvidia.com/gpu-accelerated-libraries
  OpenCL libraries: http://www.iwocl.org/resources/opencl-libraries-and-toolkits
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Directive-based GPU 
programming

OpenACC
● Backed by Portland Group, CAPS, Cray and NVIDIA
● Compilers: PGI, Cray, CAPS HMPP (GCC partial 

support)

OpenMP 4.0+: general offload directives
● More than just loop offload
● GCC, clang/llvm

https://developer.nvidia.com/gpu-accelerated-libraries
http://www.iwocl.org/resources/opencl-libraries-and-toolkits
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Directive Based GPU CodeDirective Based GPU Code

● OpenMP, OpenACC
● Pros

● Same code base as CPU version
● Short time to solution
● Portability is better due to different backends

● Cons
● Generated code may not be as fast as hand-

tuned CUDA
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Native GPU codeNative GPU code

● CUDA, OpenCL
● Pros

● Good control and best performance
● Cons

● Requires most time
● Portability (including performance)
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Native GPU code
in a non C/C++ project
Native GPU code
in a non C/C++ project

● Alternatives:
● Cuda Fortran (PGI)
● PyCUDA / PyOpenCL
● CUDA Python
● Alea GPU: .NET
● Julia, R,...
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CUDA is Nvidia specificCUDA is Nvidia specific

● OpenCL is standard
● Support for a wide range of devices

● GPUs (from mobile to server), FPGAs, CPUs,...
● Performance portability is difficult (impossible 

by some measure)
● On NVIDIA hardware

● CUDA is generally faster
● Remains NVIDIA’s main programming interface
● Will evolve faster than OpenCL
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SummarySummary

● Power wall  current trends in computing: →
many-core & accelerators

● Throughput vs latency architectures

● Accelerators are evolving fast but their use is 
still challenging

● Programming GPUs
● CUDA, OpenCL
● Directive-based approaches
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