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Motivation

“Computer Organization and Design”. D. A: Patterson, J. L. Hennessy, 2014
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Motivation

Instruction-level parallelism 

Memory access (latency)

Power consumption
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Motivation
 Dennard’s scaling vs Moore’s Law

IBM Power8 (Q3’15)
22 nm
3.12 GHz
TDP 190-200 W
12 cores/96 threads

Intel Xeon E7-8890 v4 (Q2’16)
14 nm
2.2 GHz
TDP 165 W
24 cores/48 threads
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Motivation
 5 nm in about 4-6 years:
• Faster

• More transistors

• … but only 10% simultaneously active (dark silicon)

Specialization!
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Motivation
Concurrency and energy efficiency
Top500 vs Green500 (June 2016) 

Rank

Top/Green

Site Technology MFLOPS/W

1/3 Sunway TaihuLight –
National Supercomputing 
Center

Intel Xeon E5 8C 2.3 
GHz + PEZY-SCnp

6,051

94/1 Shoubu - RIKEN Sunway SW26010 
260C 1.45GHz

6,673
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Rank

Top/Green

Site Technology MFLOPS/W MW to
EXAFLOPS?

1/3 Sunway TaihuLight –
National Supercomputing 
Center

Intel Xeon E5 8C 2.3 
GHz + PEZY-SCnp

6,051 165

94/1 Shoubu - RIKEN Sunway SW26010 
260C 1.45GHz

6,673 149

Motivation
Concurrency and energy efficiency
Top500 vs Green500 (June 2016) 

Oskarshamn Nuclear Power Plant
• Most powerful in Sweden
• ABB-II: 1,400 MWe
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Motivation
Concurrency and energy efficiency
System ranked #1 in Green500
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Motivation
Concurrency and energy efficiency
System ranked #1 in Green500
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PEZY-SCnpGoal: 20MW for 1 EXAFLOP by 2020

Maintaining the improvement rate of last
Six and a half years (x1.3/year)  28 MW by 2020!!!

1 MW ≈ $1 Million/year! (source: DKRZ)
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Motivation
 Reduce energy consumption!
• Costs over lifetime of an HPC facility often exceed acquisition costs

• Hazard for health and environment

• Heat reduces hardware reliability

 Personal view
• Hardware features some power-saving mechanisms (from mobile/embedded 

to desktop/server)

• Scientific apps. are in general energy-oblivious
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Outline
 What can I do? … A recipe to saving energy:

Optimize performance!!!

1. Choose the “right” hardware
2. Dynamic Voltage-Frequency Scaling (DVFS)
3. Dynamic Concurrency Throttling (DCT)
4. Avoid polling
5. Approximate computing/adaptive precisión
6. Near Threshold Voltage Computing (NTVC)
7. Energy-proportional hardware
8. Virtualization of HPC resources
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A Recipe to Saving Energy
0. Disclaimer

 DISCLAIMER
• Sorry, most of the examples come from linear algebra:

◦ Solution of dense/sparse linear systems via direct/iterative methods

◦ Solution of eigenvalue problems

• …but the message carries over to many other math kernels for scientific and 
engineering applications
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A Recipe to Saving Energy
1. Choose the right hardware

 The Conjugate Gradient (CG) method is a representative of the 
performance/energy efficiency attained by real scientific applications 
(HPCCG benchmark)

 Performance depends on:
• Target architecture: frequency-voltage setting, #cores, arithmetic floating-

point precision, etc.

• Compiler optimizations

• Sparsity pattern 

• Storage format

• Programmer’s optimization effort
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A Recipe to Saving Energy
1. Choose the right hardware
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A Recipe to Saving Energy
1. Choose the right hardware

 Optimization effort:
• Multicore x86-based: Intel MKL with CSR and BCSR, and CSB library

• Other multicore: CSR+OpenMP

• GPUs: ELLPACK & SELL-P, with further optimizations (described in last block)
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A Recipe to Saving Energy
1. Choose the right hardware
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A Recipe to Saving Energy
1. Choose the right hardware
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A Recipe to Saving Energy
2. DVFS

 Dense linear algebra kernels are the building blocks for many 
scientific and engineering applications: _GEMV, _GEMM

 (Dense) LU factorization is the basis for the LINPACK benchmark 
(Top500/Green500 lists): _GETRF

 Routines are highly optimized as part of vendor implementations of 
BLAS/LAPACK (Intel MKL, AMD ACML, IBM ESSL, NVIDIA CuBLAS, 
etc.)
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A Recipe to Saving Energy
2. DVFS

 Current processors adhere to the ACPI (Advanced Configuration and 
Power Interface) standard:
• P-states: 

◦ Adjust voltage-frequency to the workload in execution

◦ Control by the Linux kernel or user

• C-states: 

◦ Suspend processor components to save energy

◦ Can waste energy if CPU needs to be activated soon

◦ No control by the user
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A Recipe to Saving Energy
2. DVFS

 P-states
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A Recipe to Saving Energy
2. DVFS

 P-states
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A Recipe to Saving Energy
2. DVFS

 Control of P-states by user possible via cpufrequtils, but too slow:
• 225 μseconds in Intel E5-2620 

• Directly writing in MSR (in μseconds):
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A Recipe to Saving Energy
2. DVFS

 C-states (Core i7-Nehalem, similar for others)
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A Recipe to Saving Energy
3. DCT

 Solution of eigenvalue problems is one of the cornerstones for 
scientific/engineering applications

 In many cases, the problem is dense and presents a symmetric 
structure
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A Recipe to Saving Energy
3. DCT

 Control the number of threads in execution
• More threads does not necessarily mean faster

• Even if (slightly faster, or at least not slower), it may not be more energy 
efficient
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A Recipe to Saving Energy
3. DCT

 Intel E5-2620. DSYMV:
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A Recipe to Saving Energy
3. DCT

 Intel E5-2620. DSYR2K:
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A Recipe to Saving Energy
3. DCT

 Control with fine granularity may be necessary:
• Reduction to tridiagonal from via _SYTRD (key for the solution of dense 

eigenvalue problems) spends half of its flops in _SYMV and the other half in 
_SYR2K

• Subproblems become progressively smaller, till they fit into the cache
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A Recipe to Saving Energy
4. Avoid polling

 Do nothing well!

 Polling ensures a rapid reaction of CPU to status changes, but 
prevents it from entering energy-saving C-states
• Wait for other tasks to complete (task-parallelism, synchronization)

• CPU-GPU execution

• MPI blocking routines
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A Recipe to Saving Energy
4. Avoid polling

 ILUPACK’s PCG on Intel Xeon E5504 (2x4 cores)
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A Recipe to Saving Energy
4. Avoid polling

 ILUPACK’s PCG on Intel Xeon E5504 (2x4 cores)
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A Recipe to Saving Energy
4. Avoid polling

 CG on GPU: Intel Core i7-3770K + NVIDIA GeForce GTX480
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A Recipe to Saving Energy
5. Approximate computing

 Some applications do not need a “fully accurate” answer:
• Signal & video processing

• Probabilistic inference 

• Service profiling 

• Monte Carlo simulation 

• Machine learning

 Trade off accuracy for energy
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A Recipe to Saving Energy
5. Approximate computing

 Numerical linear algebra for scientific computing?
• Tiny errors (round-off) can rapidly “aggregate”

• Double precision is the standard

 Can we work in reduced precision (most of the time), but still 
compute a full-precision solution?
• Adaptive precision
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A Recipe to Saving Energy
5. Approximate computing

 For linear systems, mixed precision+iterative refinement is a long-known 
technique with good results:

 On conventional hardware, SP is twice as fast as DP. In addition, it can save 
energy by reducing data communication to half

 On GPUs, the difference between SP and DP can be as large as 26x

 NVIDIA “Pascal” GPUs support half (16-bit) precision

A = LU O(n3) flops SINGLE
x = L\(U\b) O(n2) flops SINGLE
r = b-A*x O(n2) flops DOUBLE
while || r || not small enough O(n2) flops DOUBLE

z = L\(U\r) O(n2) flops SINGLE
x = x + z O(n) flops DOUBLE
r = r-A*x O(n2) flops DOUBLE

end
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A Recipe to Saving Energy
5. Approximate computing

 In Jacobi-based solvers for linear systems, precision can be adapted 
component-wise: FPGAs!
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A Recipe to Saving Energy
5. Approximate computing

 For MR3 dense eigensolver, 
extended precision in a few 
suboperations is key to 
calculate “correct” solution 
at high speed
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A Recipe to Saving Energy
6. NTVC

 Dynamic power is proportional to V^2 f

• Undervolting: Reduce V, but maintain f

• NTVC: Reduce (V,f) in the same proportion

◦ For some applications, reducing f does not impact performance

◦ For others, a linear decrease in performance is expected
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A Recipe to Saving Energy
6. NTVC

 Operating near the voltage threshold may introduce errors

 Integrate fault-tolerance into software (applications)
• Check-point + restart

• Modular redundancy

• Algorithmic-based fault tolerance (ABFT)

 What is the energy trade-off?
• Move from error-free (VR,fR) → error-prone (VA,fA)

• Detection overhead Od (even if no errors occur)

• Correction overhead Oc (proportional to error rate)
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A Recipe to Saving Energy
6. NTVC

 For undervolting, any DLA and architecture:
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A Recipe to Saving Energy
6. NTVC

 For NTVC, assuming linear relation between performance and f:

• Same relation for
compute-bound kernels

• …but iso-energy more 
difficult for memory-
bound kernels



Energy Efficiency in Scientific ComputingKTH Summer School “Introduction to Scientific Computing”, Stockholm 2016

A Recipe to Saving Energy
7. Energy-proportional hardware

 Power consumption should be proportional to use of resources

“The case for energy-proportional computing”. L. A. Barroso, U. Hölzle, 
IEEE Computer, 2007
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A Recipe to Saving Energy
7. Energy-proportional hardware

 Stencil computation on Intel Xeon E5-2620 (2x6 cores)

Power
(W)
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A Recipe to Saving Energy
8. Virtualization of HPC resources

 Servers seldom operate at 100% of their maximum utilization level

“The case for energy-proportional computing”. L. A. Barroso, U. Hölzle, 
IEEE Computer, 2007

Average CPU utilization of more than 
5,000 servers during a six-month 
period
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A Recipe to Saving Energy
8. Virtualization of HPC resources

 Same for GPUs in a cluster:
• Not all applications can run on a GPU

• Not all parts of application’s code benefit from a GPU

 Virtualization of accelerators



Energy Efficiency in Scientific ComputingKTH Summer School “Introduction to Scientific Computing”, Stockholm 2016

A Recipe to Saving Energy
8. Virtualization of HPC resources

 Transparent view of remote GPUs

 …but slower performance for some applications
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Outline
 A recipe to saving energy: Optimize performance!!!

 … but other “chefs” may propose a different recipe

1. Choose the “right” hardware
2. Dynamic Voltage-Frequency Scaling (DVFS)
3. Dynamic Concurrency Throttling (DCT)
4. Avoid polling
5. Approximate computing/adaptive precisión
6. Near Threshold Voltage Computing (NTVC)
7. Energy-proportional hardware
8. Virtualization of HPC resources
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