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Motivation

“Computer Organization and Design”. D. A: Patterson, J. L. Hennessy, 2014
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Motivation

Instruction-level parallelism 

Memory access (latency)

Power consumption
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Motivation
 Dennard’s scaling vs Moore’s Law

IBM Power8 (Q3’15)
22 nm
3.12 GHz
TDP 190-200 W
12 cores/96 threads

Intel Xeon E7-8890 v4 (Q2’16)
14 nm
2.2 GHz
TDP 165 W
24 cores/48 threads
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Motivation
 5 nm in about 4-6 years:
• Faster

• More transistors

• … but only 10% simultaneously active (dark silicon)

Specialization!
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Motivation
Concurrency and energy efficiency
Top500 vs Green500 (June 2016) 

Rank

Top/Green

Site Technology MFLOPS/W

1/3 Sunway TaihuLight –
National Supercomputing 
Center

Intel Xeon E5 8C 2.3 
GHz + PEZY-SCnp

6,051

94/1 Shoubu - RIKEN Sunway SW26010 
260C 1.45GHz

6,673
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Rank

Top/Green

Site Technology MFLOPS/W MW to
EXAFLOPS?

1/3 Sunway TaihuLight –
National Supercomputing 
Center

Intel Xeon E5 8C 2.3 
GHz + PEZY-SCnp

6,051 165

94/1 Shoubu - RIKEN Sunway SW26010 
260C 1.45GHz

6,673 149

Motivation
Concurrency and energy efficiency
Top500 vs Green500 (June 2016) 

Oskarshamn Nuclear Power Plant
• Most powerful in Sweden
• ABB-II: 1,400 MWe
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Motivation
Concurrency and energy efficiency
System ranked #1 in Green500
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Motivation
Concurrency and energy efficiency
System ranked #1 in Green500

0

1000

2000

3000

4000

5000

6000

7000

8000

MFLOPS/W

IBM BlueGene/Q

Intel Xeon Phi

NVIDIA/AMD GPUs

PEZY-SCnpGoal: 20MW for 1 EXAFLOP by 2020

Maintaining the improvement rate of last
Six and a half years (x1.3/year)  28 MW by 2020!!!

1 MW ≈ $1 Million/year! (source: DKRZ)
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Motivation
 Reduce energy consumption!
• Costs over lifetime of an HPC facility often exceed acquisition costs

• Hazard for health and environment

• Heat reduces hardware reliability

 Personal view
• Hardware features some power-saving mechanisms (from mobile/embedded 

to desktop/server)

• Scientific apps. are in general energy-oblivious
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Outline
 What can I do? … A recipe to saving energy:

Optimize performance!!!

1. Choose the “right” hardware
2. Dynamic Voltage-Frequency Scaling (DVFS)
3. Dynamic Concurrency Throttling (DCT)
4. Avoid polling
5. Approximate computing/adaptive precisión
6. Near Threshold Voltage Computing (NTVC)
7. Energy-proportional hardware
8. Virtualization of HPC resources
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A Recipe to Saving Energy
0. Disclaimer

 DISCLAIMER
• Sorry, most of the examples come from linear algebra:

◦ Solution of dense/sparse linear systems via direct/iterative methods

◦ Solution of eigenvalue problems

• …but the message carries over to many other math kernels for scientific and 
engineering applications
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A Recipe to Saving Energy
1. Choose the right hardware

 The Conjugate Gradient (CG) method is a representative of the 
performance/energy efficiency attained by real scientific applications 
(HPCCG benchmark)

 Performance depends on:
• Target architecture: frequency-voltage setting, #cores, arithmetic floating-

point precision, etc.

• Compiler optimizations

• Sparsity pattern 

• Storage format

• Programmer’s optimization effort
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A Recipe to Saving Energy
1. Choose the right hardware
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A Recipe to Saving Energy
1. Choose the right hardware

 Optimization effort:
• Multicore x86-based: Intel MKL with CSR and BCSR, and CSB library

• Other multicore: CSR+OpenMP

• GPUs: ELLPACK & SELL-P, with further optimizations (described in last block)
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A Recipe to Saving Energy
1. Choose the right hardware
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A Recipe to Saving Energy
1. Choose the right hardware
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A Recipe to Saving Energy
2. DVFS

 Dense linear algebra kernels are the building blocks for many 
scientific and engineering applications: _GEMV, _GEMM

 (Dense) LU factorization is the basis for the LINPACK benchmark 
(Top500/Green500 lists): _GETRF

 Routines are highly optimized as part of vendor implementations of 
BLAS/LAPACK (Intel MKL, AMD ACML, IBM ESSL, NVIDIA CuBLAS, 
etc.)
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A Recipe to Saving Energy
2. DVFS

 Current processors adhere to the ACPI (Advanced Configuration and 
Power Interface) standard:
• P-states: 

◦ Adjust voltage-frequency to the workload in execution

◦ Control by the Linux kernel or user

• C-states: 

◦ Suspend processor components to save energy

◦ Can waste energy if CPU needs to be activated soon

◦ No control by the user
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A Recipe to Saving Energy
2. DVFS

 P-states
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A Recipe to Saving Energy
2. DVFS

 P-states
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A Recipe to Saving Energy
2. DVFS

 Control of P-states by user possible via cpufrequtils, but too slow:
• 225 μseconds in Intel E5-2620 

• Directly writing in MSR (in μseconds):
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A Recipe to Saving Energy
2. DVFS

 C-states (Core i7-Nehalem, similar for others)
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A Recipe to Saving Energy
3. DCT

 Solution of eigenvalue problems is one of the cornerstones for 
scientific/engineering applications

 In many cases, the problem is dense and presents a symmetric 
structure
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A Recipe to Saving Energy
3. DCT

 Control the number of threads in execution
• More threads does not necessarily mean faster

• Even if (slightly faster, or at least not slower), it may not be more energy 
efficient
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A Recipe to Saving Energy
3. DCT

 Intel E5-2620. DSYMV:
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A Recipe to Saving Energy
3. DCT

 Intel E5-2620. DSYR2K:
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A Recipe to Saving Energy
3. DCT

 Control with fine granularity may be necessary:
• Reduction to tridiagonal from via _SYTRD (key for the solution of dense 

eigenvalue problems) spends half of its flops in _SYMV and the other half in 
_SYR2K

• Subproblems become progressively smaller, till they fit into the cache
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A Recipe to Saving Energy
4. Avoid polling

 Do nothing well!

 Polling ensures a rapid reaction of CPU to status changes, but 
prevents it from entering energy-saving C-states
• Wait for other tasks to complete (task-parallelism, synchronization)

• CPU-GPU execution

• MPI blocking routines
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A Recipe to Saving Energy
4. Avoid polling

 ILUPACK’s PCG on Intel Xeon E5504 (2x4 cores)
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A Recipe to Saving Energy
4. Avoid polling

 ILUPACK’s PCG on Intel Xeon E5504 (2x4 cores)
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A Recipe to Saving Energy
4. Avoid polling

 CG on GPU: Intel Core i7-3770K + NVIDIA GeForce GTX480
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A Recipe to Saving Energy
5. Approximate computing

 Some applications do not need a “fully accurate” answer:
• Signal & video processing

• Probabilistic inference 

• Service profiling 

• Monte Carlo simulation 

• Machine learning

 Trade off accuracy for energy
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A Recipe to Saving Energy
5. Approximate computing

 Numerical linear algebra for scientific computing?
• Tiny errors (round-off) can rapidly “aggregate”

• Double precision is the standard

 Can we work in reduced precision (most of the time), but still 
compute a full-precision solution?
• Adaptive precision
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A Recipe to Saving Energy
5. Approximate computing

 For linear systems, mixed precision+iterative refinement is a long-known 
technique with good results:

 On conventional hardware, SP is twice as fast as DP. In addition, it can save 
energy by reducing data communication to half

 On GPUs, the difference between SP and DP can be as large as 26x

 NVIDIA “Pascal” GPUs support half (16-bit) precision

A = LU O(n3) flops SINGLE
x = L\(U\b) O(n2) flops SINGLE
r = b-A*x O(n2) flops DOUBLE
while || r || not small enough O(n2) flops DOUBLE

z = L\(U\r) O(n2) flops SINGLE
x = x + z O(n) flops DOUBLE
r = r-A*x O(n2) flops DOUBLE

end
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A Recipe to Saving Energy
5. Approximate computing

 In Jacobi-based solvers for linear systems, precision can be adapted 
component-wise: FPGAs!
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A Recipe to Saving Energy
5. Approximate computing

 For MR3 dense eigensolver, 
extended precision in a few 
suboperations is key to 
calculate “correct” solution 
at high speed
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A Recipe to Saving Energy
6. NTVC

 Dynamic power is proportional to V^2 f

• Undervolting: Reduce V, but maintain f

• NTVC: Reduce (V,f) in the same proportion

◦ For some applications, reducing f does not impact performance

◦ For others, a linear decrease in performance is expected
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A Recipe to Saving Energy
6. NTVC

 Operating near the voltage threshold may introduce errors

 Integrate fault-tolerance into software (applications)
• Check-point + restart

• Modular redundancy

• Algorithmic-based fault tolerance (ABFT)

 What is the energy trade-off?
• Move from error-free (VR,fR) → error-prone (VA,fA)

• Detection overhead Od (even if no errors occur)

• Correction overhead Oc (proportional to error rate)
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A Recipe to Saving Energy
6. NTVC

 For undervolting, any DLA and architecture:
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A Recipe to Saving Energy
6. NTVC

 For NTVC, assuming linear relation between performance and f:

• Same relation for
compute-bound kernels

• …but iso-energy more 
difficult for memory-
bound kernels
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A Recipe to Saving Energy
7. Energy-proportional hardware

 Power consumption should be proportional to use of resources

“The case for energy-proportional computing”. L. A. Barroso, U. Hölzle, 
IEEE Computer, 2007
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A Recipe to Saving Energy
7. Energy-proportional hardware

 Stencil computation on Intel Xeon E5-2620 (2x6 cores)

Power
(W)
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A Recipe to Saving Energy
8. Virtualization of HPC resources

 Servers seldom operate at 100% of their maximum utilization level

“The case for energy-proportional computing”. L. A. Barroso, U. Hölzle, 
IEEE Computer, 2007

Average CPU utilization of more than 
5,000 servers during a six-month 
period
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A Recipe to Saving Energy
8. Virtualization of HPC resources

 Same for GPUs in a cluster:
• Not all applications can run on a GPU

• Not all parts of application’s code benefit from a GPU

 Virtualization of accelerators
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A Recipe to Saving Energy
8. Virtualization of HPC resources

 Transparent view of remote GPUs

 …but slower performance for some applications
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Outline
 A recipe to saving energy: Optimize performance!!!

 … but other “chefs” may propose a different recipe

1. Choose the “right” hardware
2. Dynamic Voltage-Frequency Scaling (DVFS)
3. Dynamic Concurrency Throttling (DCT)
4. Avoid polling
5. Approximate computing/adaptive precisión
6. Near Threshold Voltage Computing (NTVC)
7. Energy-proportional hardware
8. Virtualization of HPC resources



Energy Efficiency in Scientific Computing

Enrique S. QUINTANA-ORTÍ
Professor of Computer Architecture
Group leader High Performance Computing & Architectures (HPC&A) group
http://www.uji.es/~quintana


