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Figure 3. Top: [↵/Fe] abundances and [Fe/H] metallicities of 16,276 SDSS/SEGUE G-dwarf stars, binned in 0.025 dex by 0.0125 dex pixels. The pixel colours
represent the number counts, as shown by the colour bar. The selection boxes used to extract the two sub-samples we use in this section are shown as red
and blue rectangles. ↵-element and iron abundances can be used as a proxy for age; the sub-sample with high [↵/Fe] and low [Fe/H] we call the ↵-young
sub-sample and the sub-sample with low [↵/Fe] and high [Fe/H] we call the ↵-old sub-sample. Bottom left: The selection-function-corrected number density
profiles of the ↵-old sub-sample (red) and ↵-young sub-sample (blue). The solid lines are exponential fits with scale heights ⇣h indicated. Bottom right: Vertical
velocity dispersion as a function of height. The ↵-old sub-sample (red) is best fit by a model with negligible dark matter (upper dashed line) and ↵-young
sub-sample (blue) is best fit by a model including dark matter (lower solid line). To aid visual comparison of the models, the upper solid line (lower dashed
line) shows the best-fitting ↵-young (↵-old) density model using the ↵-old (↵-young) tracer density. As the sub-samples orbit in the same underlying potential,
they should make consistent predictions about the local dark matter density. These models assume that the radial and vertical motions can be decoupled; the
discrepancy in the fits indicates that this assumption is incorrect.

dark matter density ⇢
dm

= 0.014 ± 0.004 M� pc�3. This model
is shown as solid lines in the bottom-left panel of Fig. 3. Again, we
plot this model using both the ↵-old ⇣

tr

(upper solid line) and the
↵-young ⇣

tr

(lower solid line). This model is an excellent approx-
imation to the ↵-young sample, but fails to reproduce the ↵-old
sample.

As we previously discussed, the ↵-old and ↵-young sub-
samples feel the same underlying dark-matter density. If our mod-
elling approach is correct and the radial and vertical motions can be
decoupled, then the best-fit models determined from the two sub-
samples should be consistent. However, we find that the dark matter
densities estimated by the two sub-samples are inconsistent: the ↵-
young sub-sample favours a model with small but non-negligible
local dark matter density, whereas the ↵-old sub-sample favours a
model that is consistent with no local dark matter. From this we

conclude that our assumption was incorrect and, thus, that the ra-
dial and vertical motions cannot be treated independently. This, in
turn, implies that the velocity ellipsoid is tilted.

4 VELOCITY ELLIPSOID TILT

The coupling between the radial and vertical motions is charac-
terised by the tilt angle ↵

tilt

of the velocity ellipsoid defined as

tan(2↵
tilt

) =

2 vRvz

�2

R � �2

z
. (15)

We expect �R and �z to be larger for an older population of stars
as a result of internal and external dynamical heating mechanisms
over time (e.g. Carlberg & Sellwood 1985), as well as due to the
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• 1-D analysis, assuming steady state.

• SDSS data from Büdenbender et.al., 
giving:                        & 

• 2 populations extracted by metallicity: 
young (thin) pop and old (thick) pop.

• Assume exponential tracer density 
profiles.

• Assume constant dark matter density 
and symmetry above and below the 
disk plane.
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Poisson Equation:
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Our aim: more robust limits on the dark matter density 
by making less assumptions.
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Tracer density distribution (e.g. Bovy et.al. 2016):

Assume similarly:

Model:

Gives the tilt term:

Modeling the tilt term
⌫(R, z) = ⌫(z) exp(�k0R)
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Figure A1. Top left: [↵/Fe] abundances and [Fe/H] metallicities of the G-dwarf stars, identical to Fig. 3. The red and blue boxes show the selections for the
↵-old and ↵-young sub-samples, respectively. These same colours are used in all other panels. Top middle and right: Azimuthal mean velocity and velocity
dispersion as function of height |z| away from the mid-plane at the Solar radius. Bottom row: Radial and vertical velocity dispersion and their correlated
second velocity moment for the two sub-samples. The open symbols show the results for the multivariate Gaussian velocity distribution of rank 2, while the
filled symbols show the corresponding results of a multivariate Gaussian of rank 3.
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Figure A2. Dynamical profiles for the ↵-old (red) and ↵-young (blue) as a function of distance from the mid-plane at the solar radius. Top left: mean
radial velocity. Top middle: mean vertical velocity. Top right: tilt angle of the velocity ellipsoid. Bottom left: radial velocity dispersion. Bottom middle:
vertical velocity dispersion. Bottom right: correlated second velocity moment. In the latter four panels, the open symbols show the case for which we assume
vR = vz = 0 and the filled symbols show the case where vR and vz are free parameters in the likelihood function (equation 1).
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Plot easily fit by                        , which makes the tilt term look like a constant 
density term and hence a positive or negative contribution to the dark matter 
density.
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The baryonic components’ contributions 
to the (surface) density
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Figure 3. The density profiles of the di↵erent baryonic components; dashed
lines are gas and solid lines are stellar components, with the solid black line
being the total baryonic density (including gas). The main sequence stars
are labelled with MS, followed by their visual magnitude range. Note that
for the dwarfs and main sequence stars with MV > 4, the lines shown refer
to only the thin disk component; all thick components are shown jointly
by the line labelled Thick disk, see section 4.1.5. The dotted vertical lines
marks the borders of the region of the data we use. For this plot parameters
are mainly the same as in McKee et al. (2015), see section 4 for details. The
MS: 4 to 5 category include giants, and Dwarfs =M dwarfs + brown dwarfs
+WD + NS + BH.

4.3 Modeling the baryonic surface density distribution

It is the surface density, not the density, which enters the calculation
of the velocity dispersion in equation (3), and hence it is the sur-
face density which we need to model well. When running our code
to determine the dark matter density all parameters used to model
the baryonic surface density profile will enter with prior ranges,
encompassing our limited knowledge on their true value, which
the code then has to marginalize over to find the best fit solutions.
Hence we want to describe out knowledge on the baryonic surface
density with less parameters than what was used to generate figure
4. As seen in figure 3, many baryonic components do not contribute
significantly to the density in the region where we have tracer ve-
locity data, i.e. between the dotted horizontal lines of the plots. For
our baryon model we will only model the surface density profiles
for the thin disk dwarf component (green solid line), the thick disk
components of the dwarfs and main sequence stars (shown jointly
in the red solid line) and the HII component (purple dashed line);
the other baryonic components will simply be modeled as if all
their mass is localized at the disk plane, i.e. has a constant surface
density. The resulting model of the baryonic surface density profile
is shown by the pink line in figure 4; put explicitly the pink line is
the sum of the green solid line, the red line and the purple dashed
line, plus a constant surface density contribution making the pink
line match the total baryonic surface density at large z.

For this work the Thick Disk component is important and, as
discussed in section 4.1.5, the uncertainties do call for additional
freedom in the thick disk modeling than is included in the pink
line. As h = (1 � �)h1 + �h2, from equation (15), one can for the
same value of h either have a thick disk with a large scale height,
h2, and small contribution to the local density at the disk plane �,
or a thick disk with a small h2 and a large �. In Zheng et al. (2001)
they for M dwarfs have quite large � and small h2, while in Flynn

Figure 4. The surface density profiles for the baryonic density profiles
shown in figure 3, with the same color coding. The solid pink line is the
total surface density for our somewhat simplified baryonic model, and the
black line is the profile of the total surface density, i.e. the sum of all the
baryonic components. As seen in the figure the pink line very well mimics
the black line within the region of interest between the dotted horizontal
lines where we have data. Additionally, there is some freedom in the to-
tal baryonic surface density (i.e. at z ! 1) in the implementation of our
baryonic model, which allows the pink line to fit the black line even better.

et al. (2006) they model all thick disks with a small � and large
h2. There is a priori no reason why these thick disk components
should be modeled di↵erently, and both models seem reasonable
for all stars.To encompass this freedom we model all stellar thick
disk components jointly as a sum of two thick disks: one with a
slightly smaller scale height h2 and one with a larger scale height
h3. The density of a stellar component with a thick disk is hence
modeled as

⇢(z) = ⇢0

 
(1 � �)sech2

 
z
h1

!
+ �(1 � x) exp

 
� z

h2

!
+ �x exp

 
� z

h3

!!
,

(17)

where x is the relative contribution of the two thick disk compo-
nents to ⇢0, which refers to the local density at z = 0. We can assign
the thick disk an e↵ective scale height: he↵ = (1� x)h2 + h3, so that
we can still make use of relation (15):

h = (1 � �)h1 + �he↵ , which then gives : � =
h � h1

he↵ � h1
. (18)

For the modeling of thick disk we require: h1 < h < he↵  h2 < h3,
which automatically implies that 0 < � < 1.

For the baryonic modeling that we will use in our code (how
to refer to the code?), the thick disk is modeled as outlined above,
the gas component HII and the thin disk dwarf component as in
figure 4, where the code will for the latter use � from equation 18.
The code models all other baryonic components as localized to the
disk plane, i.e. in the same way as for the pink line of figure 4.

For the code modeling of the dwarf density distribution we
use the parameters: h = 400 pc ±5%, h1 = 332 pc ±10%, h2 =

609 pc ±20%, h3 = 1000 pc ±20%, and 0 < x < 1; this results in
the allowed intervals for � for the dwarfs: 0.018  �dwarf  0.64,
i.e. allowing for both a large and an insignificant dwarf dark disk.
Note that the parameter ranges for the scale heights are set such
that they do not overlap as we require h1 < h < he↵  h2 < h3,
which also results in some prior ranges, like that for h, becoming
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the thick disk an e↵ective scale height: he↵ = (1� x)h2 + h3, so that
we can still make use of relation (15):

h = (1 � �)h1 + �he↵ , which then gives : � =
h � h1

he↵ � h1
. (18)

For the modeling of thick disk we require: h1 < h < he↵  h2 < h3,
which automatically implies that 0 < � < 1.
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The code models all other baryonic components as localized to the
disk plane, i.e. in the same way as for the pink line of figure 4.
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use the parameters: h = 400 pc ±5%, h1 = 332 pc ±10%, h2 =

609 pc ±20%, h3 = 1000 pc ±20%, and 0 < x < 1; this results in
the allowed intervals for � for the dwarfs: 0.018  �dwarf  0.64,
i.e. allowing for both a large and an insignificant dwarf dark disk.
Note that the parameter ranges for the scale heights are set such
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• Most of the baryonic surface density is located inside the innermost bin (left 
vertical dashed line). 

• Total baryonic surface density: 

• Pink line: simplified modeling of the surface density used in Multinest.

⌃1
baryon

= 46.95M�pc
�2 ± 13%



Simplified modeling: the tracer populations 
prefer different matter distributions.

Simple modeling without tilt.

Assuming all baryonic matter inside 
innermost z bin:

Young pop: scale height h=253 pc

Old pop:    scale height h=665 pc

Tilt term is different for the two 
populations and can easily mimic an 
extra (pos or neg) DM component.

Hence tilt can resolve the tension 
on the DM density but it’s more 
difficult to resolve the tension on 
the baryonic surface density. 
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Figure 2. The tilt-free simplified modeling of equation equation 12 (solid
lines), fitted to and plotted with �2

z data divided by 2⇡Gh for the ↵-young
(blue, lower) and ↵-old (red, upper) populations. We here assume that the
tracer densities for the two populations each consist of a single exponen-
tial with scale height hyoung = 253 pc and hold = 665 pc for the ↵-young
and ↵-old populations, respectively, which are the fits of Büdenbender et al.
(2015). As seen in the plot the two populations do not prefer the same val-
ues on ⇢dm and ⌃1baryon, and neither of the solid line fits agree with the total
baryonic surface density of section 4.3: ⌃1baryon = 46.95 M�pc�2 ± 13%.
However, the approximation that all the baryonic mass is inside the inner-
most bin is not entirely true, especially for the ↵-young data. If we take this
into account and allow the fit to overshoot the low z data points we can,
for the ↵-young data, instead make the blue dashed fit which has a slightly
lower dark matter density than the blue solid line and a baryon surface den-
sity of in agreement with the result of section 4.3. We can however not play
the same trick with the ↵-old data and this gives a slight tension, further dis-
cussed in the text. Also remember that the ↵-old data is much more a↵ected
by the tilt term than the ↵-young data.

⇢dm. Hence when neglecting the tilt term the slopes of�2
z (z)/(2⇡Gh)

should be the same for the two populations since they both probe
the same matter density distribution; this observation is true inde-
pendent of baryonic mass distribution. After measuring the slope,
i.e. measuring ⇢dm, ⌃1baryon can then be determined by looking at
�2

z (z ! 0)/(2⇡Gh). Fits of equation (12) to the SDSS data from
Büdenbender et al. (2015) is shown in figure 2, and shows that in
the simplified analysis the ↵-young and ↵-old populations prefer
di↵erent baryonic surface density and dark matter density. This is
similar to Büdenbender et al. (2015) where they also find the two
populations to prefer di↵erent dark matter densities.

We do however expect tilt to a↵ect this discrepancy; the tilt
term contribution is expected to be more important for the ↵-old
population than for the ↵-young population. Looking at the �Rz

data, blue bands shown in figure 8, we see that �Rz / z is a quite
good fit to the data. Hence, the tilt term can easily mimic an extra
(positive or negative) dark matter density component, and so the
tilt term can, if large enough, make the two populations in figure 2
agree on the dark matter density. This kind of tilt term will how-
ever not resolve the tension between the two populations on the
preferred value on ⌃1baryon, shown in the labels of figure 2.

As discussed in the caption of figure 2, one can from the ↵-
young data easily find a good agreement between the total surface
density inferred from the motion of the tracer stars and the total
baryonic surface density found in section 4. For the ↵-old data on

the other hand it is not so easy to make the value on the total bary-
onic surface density inferred from the ↵-old tracer stars to agree
with the value from section 4. A similar treatment as we did for
the ↵-young stars with the dashed blue line in figure 2 will not im-
prove the ⌃1baryonn situation for the ↵-old stars. We do however have
more freedom in modeling the tilt term than we have utilized in this
simplified analysis.

When we move on to our full analysis using MultiNest we
will have more freedom in the modeling than we do in the above
discussed simplified analysis; some tension between the ↵-old �2

z
data and the expected baryonic surface density will however still
remain. It appears that the source of the mild tension is that the
�2

z data for the ↵-old population is flatter than expected, i.e. that
one would expect the velocities of the ↵-old tracer stars to be more
strongly dependent on z. The high z stars of the ↵-old population are
far away from us, making measurements more challenging, which
could potentially induce biases that we are unaware of. There is also
a small possibility that the flatness of �2

z for the ↵-old population is
merely a statistical fluctuation.

4 BARYONIC DENSITY PROFILE

In this section we investigate the vertical profiles of the di↵erent
stellar and gaseous components which constitute the baryonic den-
sity profile in the solar neighborhood, defined as a vertically ori-
ented cylinder with a radius of 1 kpc, as in McKee et al. (2015). We
will pay more attention to the vertical profile for those components
which contribute significantly to the density at z values for which
we have tracer velocity data. In this section on the baryonic density
profile we will mainly follow the work of McKee et al. (2015) and
references therein.

4.1 Stars

4.1.1 Functional form of the stellar mass density profile

To model the stellar density as a function of distance to the galactic
plane, z, the simplest way would be to assume that each stellar com-
ponent could be modeled as a simple one-component functional
form; for example n / sech2(z/h) (isothermal self-gravitating disk)
or n / exp2(�z/h) (isothermal distribution in constant gravitational
field). However, in the study of M dwarfs in Gould et al. (1996) they
find that such simple one-component models are inconsistent with
observations and that a two-component model, such as the sum of
two exponentials or the sum of a sech2 term and an exponential, is
needed. In both Gould et al. (1996) and Zheng et al. (2001) they
found the sech2 plus exponential modeling to be in better agree-
ment with the M dwarf data; furthermore it is also more appealing
in that the z-derivative of sech2(z) goes to 0 as z ! 0, as is what
we expect for the density profile. We will here hence model all thin
disk stellar components with sech2 functions and the M dwarfs as
sech2 plus exp, i.e. as:

⇢(z) = ⇢0

 
(1 � �)sech2

 
z
h1

!
+ � exp

 
� z

h2

!!
, (13)

where ⇢(z) is the mass density, ⇢0 = ⇢(z = 0), and h2 > h1 Although
they are not really separate components it can still be useful to think
of the two components of (13) as a thin and a thick disk, � is then
the fraction of the density at z = 0 associated with the thick disk.
Integrating (13) gives the surface density of M dwarfs:

⌃ = 2
Z 1

0
⇢dz = 2⇢0[(1 � �)h1 + �h2] = 2⇢0h (14)
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Fit not including the tilt term.

Fits the data well.

Fit including the tilt term.

Fits the data well, gives a wider range 
for the dark matter density.
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Fits the young data well, but not the vertical velocities for the old data.

Resulting dark matter density similar to that from the young population alone.
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• Joint population analysis driven by the young population data.

• Young pop (with tilt): 

Both pop (with tilt):

• We have so far not discussed the rotation curve term. 
Literature compatible with zero rotation curve term, adds an 
error of ~0.1 Gev/cm^3 (Bovy et.al. 2012).

• Further investigate the old population data. Disequilibrium, 
breathing mode? (Banik et.al. 2016)

• Gaia data.

Final remarks.

⇢dm = 0.46+0.13
�0.16 GeV/cm3

⇢dm = 0.40+0.8
�0.6 GeV/cm3


