Weighing our Dark Halo

James Binney

Rudolf Peierls Centre for Theoretical Physics

University of Oxford

Overview

• 5 papers

- Binney, Burnett & the RAVE collaboration 2014
- Piffl, Binney & the RAVE collaboration 2014
- Piffl Penoyre & Binney 2015
- Binney & Piffl 2016
- Cole & Binney 2016

The physical idea

- We fit an analytic f(J) to the kinematics of RAVE stars
- The kinematics essentially fixes the dependence of f on J_r and J_z
- From $V_c(R)$ we know how much mass is need inside R
- If all this mass is put into the disc, the stellar disc is too thin
- We decant mass from the disc to a dark halo until the disc has the observed thickness
- The leading uncertainty is the flattening of the halo
 - A flatter halo creates more $K_{\rm R}$ and $K_{\rm z}$ with the same mass so requires a less massive disc

Binney + 2014

- Using newly introduced Staeckel Fudge Binney (2012) fitted f(J) to GCS data (s <~ 0.1 kpc)
- Binney + (2014) tested its *predictions* for kinematics of RAVE stars in 8 volumes with s <~ 2 kpc

Binney + 2014 (cont)

Piffl Penoyre & Binney 2015

- Adopt
 - For disc f(J) found by Piffl + 2014
 - For dark halo f(J) that in isolation self-consistently generates NFW found by Piffl + 2014
- Solve for self-consistent Phi(x) and examine model
- disc only moderately affected by change in halo
- But compression of halo makes Galaxy too centrally concentrated

Binney & Piffl (2015)

- Search model space for a disc f(J) and a NFW f(J) that's consistent with the data used by Piffl + (2014)
- Model found but its centre is very DM dominated making it inconsistent with microlensing data
- Conclude: our Galaxy is inconsistent with an adiabatically compressed NFW halo
- Either halo was never NFW (interacting DM etc) or significant upscattering of DM by baryons

Conclusions

- F(J) modelling is an extremely powerful tool
- Local DM density is 0.0126 $q^{-0.86}$ M. pc^{-3}
- The DM mass profile M(R) is securely established for R<R₀
 - M(<R₀) fixed to few percent
- Either the dark halo never had an NFW profile, or it has not been adiabatically compressed
- All this work should be repeated
 - With a proper selection of stars from model for comparison with RAVE
 - With Tgas kinematics
- Multi-component modelling is the future of galactic (chemo)dynamics
 - f(J) modelling is clearly the way to go
 - The essential tools are already online