Simulations of Alfvén wave driving of the solar chromosphere

Efficient heating and spicule launching

Tony Arber and Chris Brady University of Warwick

IRIS-6, Stockholm 2016

Chromospheric Heating & Spicules

Chromospheric Heating & Spicules

Hollweg (Solar Physics 1978-82) Alfvén waves \rightarrow ponderomotive force \rightarrow shocks

Hollweg (1982) suggested that the shocks are spicules

Matsumoto & Suzuki (ApJ, 2012 and MNRAS, 2014) - chromosphere + corona + solar wind van Ballegooijen et al. (2011, ApJ) reduced MHD turbulence chromospheric heating

Chromospheric Heating & Spicules

Hollweg (Solar Physics 1978-82) Alfvén waves → ponderomotive force → shocks
Hollweg (1982) suggested that the shocks are spicules
Matsumoto & Suzuki (ApJ, 2012 and MNRAS, 2014) - chromosphere + corona + solar wind
van Ballegooijen et al. (2011, ApJ) reduced MHD turbulence chromospheric heating

MHD Driving of Flux Concentration

Model Setup

10.0_E

00.1

0.10

0.01

0.01

Relative power

- Expanding flux tube
- Drive Alfvén or kink waves in 2.5D
- Total Poynting flux 2x10⁷ erg cm⁻² s⁻¹
- Flat spectrum or K41

Resistive MHD with Neutrals

Pedersen resistivity

$$\eta_P = \eta + \frac{\xi_n^2 B^2}{(1 - \xi_n)} \frac{1}{\rho} \tau_{in}$$

 $\xi_n = \rho_n / \rho$ – neutral fraction

 τ_{in} – ion-neutral collision time

Cooling term

$$H_{cooling}(\mathbf{r},t) = \frac{1}{\tau} \int_{t-\tau}^{t} H_{visc}(\mathbf{r},t') dt'$$

$$\begin{aligned} \frac{D\rho}{Dt} &= -\rho \nabla .\mathbf{v} \\ \rho \frac{D\mathbf{v}}{Dt} &= \mathbf{j} \times \mathbf{B} + \rho \mathbf{g} - \nabla P + \mathbf{F}_{shock} \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E} \\ \frac{D\epsilon}{Dt} &= -\frac{P}{\rho} \nabla .\mathbf{v} + \frac{H_{\text{visc}}}{\rho} + \frac{H_{\text{Ohmic}}}{\rho} \\ \mathbf{j} &= \frac{1}{\mu_0} \nabla \times \mathbf{B} \\ \mathbf{E} &= -\mathbf{v} \times \mathbf{B} + \eta \mathbf{j}_{\parallel} + \eta_p \mathbf{j}_{\perp} \end{aligned}$$

Simulations

- 4000x8000 resolution
- Run to t = 1000 s (~15 Alfvén transits)
- Cooling averaged over 16 s

Papers from Piddington (1956), Goodman (2011), Leake (2006), De Pontieu (2001), Khomenko (2012), Martinez-Sykora (2012)....

Average shock heating

Black - shock heating for mixed driver

Blue - shock heating Alfvén driver

Orange - mixed mode driver and cooling

Green - cooling rate from Avrett 1981 Model C (quiet)

Shaded - bounded by the Model A (dark network region) and Model F (very bright network element)

Avrett, Solar Phenomena in Stars and Stellar Systems, 1981

Ponderomotive Force

Sound waves generated in chromosphere from MHD waves

Coupling not at $\beta=1$ (vertical dashed line)

Ponderomotive robust - just B-field and mass density

Arber, Brady & Shelyag, ApJ, **187**, 94 (2016)

Time & spatial heating profiles

Black - Heating averaged over 30 seconds

Red - Average over whole simulation

Spicules?

Acoustic shocks lift dense material

The observation is from an Hinode SOT Ca II H image from Tsiropoula.

The insert plots the relative change in density from the initial conditions of the coronal part of a simulation at the same height and scale.

Red - mixed mode **Blue** - Alfvén only

Spicule velocity

Black - mixed Alfvén and kink driver. Red - Alfvén only driver.

Simulations

Typical rise speeds at TR ~12 km s⁻¹

Transverse speeds ~9 km s⁻¹

Observations

Type-I spicule rise speed ~15 km s⁻¹

Transverse r.m.s. speeds ~4-7 km s⁻¹

Beckers, Solar Physics, **3**, 367 (1968) De Pontieu et al. Science, **318**, 1574 (2007)

Resolution and Convergence

Black - converged result with ~1km resolution

Blue - typical photospheric simulation with ~40km resolution

Summary

- Hollweg was right in 1980
- Broad spectrum MHD driver generates slow modes ponderomotive coupling
- Slow modes shock low in atmosphere
- Shock heating matches estimates of heating requirements
- Shock rise and transverse velocities match observations of Type-I spicules

But...

- In 3D Alfvén cascade to turbulence is faster
- Only limited range of, rather extreme, model flux tubes tested
- No reconnection or flux emergence ...
- No acoustic (p-mode) driving ...

Brady & Arber, ApJ, in review (2016)