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Wave generation in the lower atmosphere
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• Convective turbulent motion (Biermann 1946, Schwarzschild 1948)
• p-mode leakage (‘ramp’ effect) (Michalitsanos 1973; Bel & Leroy 1977; Suematsu 

1990, De Pontieu+ 2004)
• Magnetic reconnection
• Large Poynting flux: heating candidates for chromosphere & corona 

(Uchida & Kaburaki 1974, Wentzel 1974, Narain & Ulmschneider 1996)

G-band Ca II H
Hinode/SOT

Large 
Poynting 

flux

• Strong inhomogeneity & stratification: strong 
linear & nonlinear mode coupling (Dewar 1970, 
Stein & Schwartz 1972, Cally 1981, Hollweg 1982, 
Einaudi 1996, Bogdan+2003): infinite # of modes

trapped modes kink mode
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Observations of Alfvénic waves 
in the solar atmosphere

Transverse MHD waves ubiquitous in the solar atmosphere   

CoMP
Tomczyk et al. 2007

(Tomczyk+ 2007, Okamoto+ 2007, De Pontieu+ 2007, Lin 2011, McIntosh+ 2011, Morton+ 2011, Antolin & Verwichte 2011, Okamoto & 
De Pontieu 2012, Hillier+ 2013, Schmieder+ 2013, Morton & McLaughlin 2014, De Pontieu+ 2014, Anfinogentov+ 2013, Nisticó+ 2013)

coronal loops
Rainy loops & 
prominences

Chromosphere  
Spicules & fibrils

Okamoto et al. 2007 De Pontieu et al. 2014
McIntosh et al. 2011
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What is the role of such waves in the solar atmosphere?

Large amplitudes >
 chromospheric heating

Small amplitudes <
 coronal heating

Are we detecting all the wave power?
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• Ubiquitous jets protruding from the chromosphere into the corona
• 2 types: I - magneto-acoustic wave driven (ballistic, v<40 km/s) (Beckers 1968, Sterling 2000)

II - Fast disappearance in Ca II H, fast upflow (v<110 km/s), mostly in QS, RBE & RBB 
on-disc (De Pontieu+ 2007, Rouppe vd Voort 2009, Sekse 2012, 2013)

• New features for type II: Multi-stranded, strong heating, swaying and torsional 
motions (Suematsu+ 2008, Pereira+2012, Skogsrud+ 2014, De Pontieu+ 2014, Rouppe v.d. Voort 2015)

SST + IRIS

Pereira et al. 2014

SST/CRISP Observations Rouppe van der Voort+ 2015

Dynamics of spicules
Alfvénic motions
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Observations of Alfvénic waves 
in the solar atmosphere

Transverse MHD waves ubiquitous in the solar atmosphere   
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Do they play an important role in the solar atmosphere?

Chromosphere: ~20 km/s
 (sufficient energy flux)

Corona: ~ 3-10 km/s 
Damping often observed

heating

solar surface

magnetic 
field line

wave 
propagation

Damping can be 
caused by resonant 
absorption (mode 

coupling): transverse 
waves convert into 
azimuthal waves

?

(Okamoto+2007)
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Alfvénic turbulence
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Figure 3. (A) Integrated (smoothed) FFT power for low (black; longer than eight minutes), medium (blue; three to eight minutes), and high (red; shorter than
three minutes) frequencies for the 2012 April 10 time series. Each of the curves has been normalized to its own mean. (C) The natural logarithm of the averaged,
normalized (smoothed) FFT power at both footpoints (dashed black lines) and the apex (solid red line) for the original time series. The solid black line corresponds to
the average of the FFT power at the footpoints. For reference, the vertical lines are at periods of three, five, and eight minutes. (B and D) Corresponding results for the
randomly shuffled time series.
(A color version of this figure is available in the online journal.)

function of frequency, which is the property in which we are
interested. The vertical lines indicate periods of three, five, and
eight minutes.

The remarkable symmetry of the loop is again obvious from
the near-identical FFT power at both loop footpoints. Also, for
each part of the loop, power is lower at high frequencies, as was
already evident from Figure 2.

Looking at the gradient of the FFT power at the apex (as a
function of frequency), it is clearly different from the footpoints,
with different damping rates in the LF/MF and HF regimes: the
normalized FFT power at the apex in the LF–MF range is less
than at the footpoints but is higher than the average footpoint
power in the HF range. As a comparison, exactly the same
procedure was followed for the randomly shuffled time series
(Figure 3(D)). As expected, the power is evenly distributed
across frequencies in the shuffled case.

5. DISCUSSION

In the previous section, we compared the results for the
original time series (2012 April 10) with the corresponding,
randomly shuffled time series as a basic, zeroth order null test

to establish the reliability of the excess HF power near the loop
apex. The same test was done for the 2012 April 11 dataset,
with the same results. As a further indication that this is indeed
a real result, we repeat the analysis on CoMP observations
taken at the same time but at different locations around the
limb. We use simple radial cuts, shown by the dotted lines in
Figure 1(A) and labeled “A”–“D.” Here, cuts A and D are chosen
at random to go through a section of the off-limb corona with a
brightness comparable to that of the apex of the loop system we
are studying. Cut B goes through the lower loop leg whereas cut
C intersects with the apex of the loop. From Figure 4 it is clear
that only cut C, which goes through the apex of the loop system,
shows the same characteristic pattern with high FFT power in
the HF range of the spectrum. For all the other cuts (A, B, and D),
the HF power is very low. This comparison gives us confidence
that the high FFT power in the HF part of the spectrum is a real
property of the trans-equatorial loop system rather than being
caused by low signal-to-noise or other instrumental effects.

Since the first observation of these propagating Doppler
velocity perturbations by Tomczyk et al. (2007), it has been
clear that these oscillations must undergo significant damping
as the perturbations are rarely seen to reach to the opposite loop
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Figure 3. (A) Integrated (smoothed) FFT power for low (black; longer than eight minutes), medium (blue; three to eight minutes), and high (red; shorter than
three minutes) frequencies for the 2012 April 10 time series. Each of the curves has been normalized to its own mean. (C) The natural logarithm of the averaged,
normalized (smoothed) FFT power at both footpoints (dashed black lines) and the apex (solid red line) for the original time series. The solid black line corresponds to
the average of the FFT power at the footpoints. For reference, the vertical lines are at periods of three, five, and eight minutes. (B and D) Corresponding results for the
randomly shuffled time series.
(A color version of this figure is available in the online journal.)

function of frequency, which is the property in which we are
interested. The vertical lines indicate periods of three, five, and
eight minutes.
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the near-identical FFT power at both loop footpoints. Also, for
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than at the footpoints but is higher than the average footpoint
power in the HF range. As a comparison, exactly the same
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across frequencies in the shuffled case.
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In the previous section, we compared the results for the
original time series (2012 April 10) with the corresponding,
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to establish the reliability of the excess HF power near the loop
apex. The same test was done for the 2012 April 11 dataset,
with the same results. As a further indication that this is indeed
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taken at the same time but at different locations around the
limb. We use simple radial cuts, shown by the dotted lines in
Figure 1(A) and labeled “A”–“D.” Here, cuts A and D are chosen
at random to go through a section of the off-limb corona with a
brightness comparable to that of the apex of the loop system we
are studying. Cut B goes through the lower loop leg whereas cut
C intersects with the apex of the loop. From Figure 4 it is clear
that only cut C, which goes through the apex of the loop system,
shows the same characteristic pattern with high FFT power in
the HF range of the spectrum. For all the other cuts (A, B, and D),
the HF power is very low. This comparison gives us confidence
that the high FFT power in the HF part of the spectrum is a real
property of the trans-equatorial loop system rather than being
caused by low signal-to-noise or other instrumental effects.
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velocity perturbations by Tomczyk et al. (2007), it has been
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Figure 1. (A) CoMP full FOV intensity on 2012 April 10. (B) Close-up view (CoMP intensity) of the region of interest. The trans-equatorial loop system is highlighted
by the dashed arc. (C) Part of a STEREO/EUVI-B image taken on 2012 April 10.
(A color version of this figure is available in the online journal.)

involved correcting for an east–west trend in the velocities and
co-aligning all frames using a cross-correlation technique. Note
that the zero-point of the wavelength scale has been redefined
by assuming that the mean Doppler shift over the field of view
(FOV) is zero. Figure 1(A) shows the full CoMP FOV (intensity)
on 2012 April 10 and the region of interest is outlined in the
small box.

Figure 1(B) provides a close-up view of the region of interest.
As in Threlfall et al. (2013), an arc is defined using six spline
points and the coordinates of the arc are resampled to match
the pixel size (4.46 arcsec for CoMP). The same coordinates are
used for both the 2012 April 10 and 2012 April 11 datasets. The
large, trans-equatorial loop system connects two small active
regions. To provide context, Figure 1(C) is (part of) an image
taken by STEREO/EUVI-B, which was observing the far side
of the Sun (at a separation angle with Earth of about 118 deg) on
2012 April 10. The loop system connects the two active regions
outlined by the box. This image shows how remarkably isolated
and north–south aligned the system is, which will help reduce
line-of-sight effects.

3. TIME–DISTANCE ANALYSIS

Figure 2(A) shows a time–distance plot along the arc high-
lighted in Figure 1. There is a clear herringbone pattern visible,
indicating disturbances propagating up from both loop foot-
points. The propagation speeds, estimated from the gradients
of the diagonal bands (pink dashed lines), are of the order of
500 km s−1. These speeds are in agreement with those quoted
by Tomczyk & McIntosh (2009). They are substantially larger
than the sound speed (∼200 km s−1 for T = 1.5 × 106 K) and
are of the order of the local Alfvén speed. For example, assum-
ing a magnetic field strength of about 10 G and a local number
density of 109 cm−3, would give an Alfvén speed of the order of
690 km s−1. The propagation speeds appear constant and very
similar on both sides of the loop. Consistent with the earlier
results from Tomczyk et al (2007) and Tomczyk & McIntosh
(2009), there is little evidence of downward propagation (as the

ridges do not appear to carry on all the way from one footpoint
to the other).

We can compute an order of magnitude estimate of the energy
contained in the perturbations using

FW = ρ⟨v2⟩Vphase,

where ρ is the density, v the velocity amplitude, and Vphase
the phase speed of the waves. Again, using a typical number
density of 109 cm−3, Vphase = 500 km s−1 and a velocity
amplitude of 0.65 km s−1 (root mean square amplitude of the
velocity perturbations in our observations) gives an energy flux
of FW ≈ 350 erg cm−2 s−1. This estimate is of the same order
as that obtained by Tomczyk & McIntosh (2009) and several
orders of magnitude too small to account for the heating of
these loop structures. We refer the interested reader to Van
Doorsselaere et al. (2008), Tomczyk & McIntosh (2009) and
Goossens et al. (2013) for a more detailed discussion on how this
estimate depends on the interpretation of the observed velocity
perturbations in terms of the various MHD waves but also to De
Moortel & Pascoe (2012) and McIntosh & De Pontieu (2012)
for a discussion on the effect of line-of-sight superposition on
the energy budget.

Figure 2(B) shows the logarithm of the fast Fourier transform
(FFT) power at each point along the loop. For reference,
the vertical white lines correspond to periods of eight and
three minutes. It is clear that, generally, most of the power is
situated in low-frequency perturbations. Additionally, power at
the loop apex appears higher, as we would expect from simple
(linear) superposition of the perturbations traveling up from
the footpoints and/or the effect of gravitational stratification
(for which the velocity perturbations are expected to grow as
ρ−1/4, see e.g. Wright & Garman 1998). For a temperature of
1.5 MK, the gravitational scale height is about 75 Mm and our
loop apex is situated about 125 Mm above the solar limb so
ezapex/(4H ) ≈ 1.5. Hence, gravitational stratification could lead
to an increase in amplitude at the apex by about 50%. Linear
superposition could potentially double the wave amplitudes so
the two effects combined could lead to a total amplitude increase

2

• Large imbalance upward/downward wave energy flux. Increase of 
high frequency wave power at loop apex -> Alfvénic turbulence? 
(De Moortel+ 2014, Tomczyk 2007, Tomczyk & McIntosh 2009)

• Significant heating from Alfvénic turbulence (Van Ballegooijen+ 
2011, Matsumoto & Suzuki 2014)

• Large non-thermal line widths may be hiding most of the wave 
power (McIntosh & De Pontieu 2012)
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Figure 6. Spatial distribution of various dynamical quantities in the reference model at time t = 3000 s: velocity stream function f, vorticity ω, magnetic flux function
h, and twist parameter α. The different columns correspond to different positions along the flux tube and are labeled with the Alfvén travel time τ (z). Each panel
shows the normalized distribution of the relevant quantity as a function of transverse coordinates x and y (see Figure 5 for information about the normalization).

(An animation of this figure is available in the online journal.)

(b)(a)

Figure 7. Magnetic field lines in the reference model at time t = 2701.7 s, viewed from an angle of 30◦. (a) The lower atmosphere up to the height of the first TR,
zTR = 1.8 Mm. The starting points of the field lines are randomly distributed inside the flux tube at height z = 0 (cylinder base). The radius of cylinder is 0.53 Mm,
and the vertical scale of the image is compressed by a factor of 2.1. (b) Continuation of the same field lines into the coronal part of the loop. The actual length of
cylinder is 49.6 Mm, so the vertical scale of the image is compressed by a factor of 47.3.

(Animations (Figure 7(a) and 7(b)) of this figure are available in the online journal.)

left and upper right panels show the footpoint motions that
drive the system. The vorticity ω(x, y, z) and twist α(x, y, z)
exhibit small-scale structures that are produced by nonlinear
interactions, as described above. A movie sequence of such
images is available in the online version of the manuscript. This
sequence covers the last 298 s of the simulation and shows that
the system is highly turbulent. The waves in the corona have
smaller spatial scales and evolve more rapidly than those in the
lower atmosphere.

Figures 7(a) and (b) show magnetic field lines in the reference
model at time t = 2702 s in the lower atmosphere and in the
corona, respectively (the vertical scales of these images are
compressed by different factors). The field lines are traced from
randomly selected points at height z = 0 in the photosphere.
The field lines are significantly distorted due to the Alfvén
waves that travel up and down the flux tube with a range of
transverse wavenumbers. Two movie sequences of such images

are available in the online version of the manuscript. These
movies show the evolution of the magnetic field over a period
of 298 s (from t = 2702 s to t = 3000 s), and are traced from
footpoints that move with the flow. The coronal field lines are
to some degree twisted and braided around each other (see
Figure 7(b)), but these structures are highly dynamic and change
on a timescale of seconds. Therefore, the system is not in a force-
free state and is best described as Alfvén wave turbulence. The
effects of such turbulence on the solar corona have been modeled
previously for both open (Hollweg 1986; Zhou & Matthaeus
1990; Matthaeus et al. 1999; Dmitruk et al. 2001; Dmitruk
& Matthaeus 2003; Cranmer & van Ballegooijen 2003, 2005;
Cranmer et al. 2007; Verdini & Velli 2007) and closed magnetic
fields (Heyvaerts & Priest 1984, 1992; Longcope & Strauss
1994; Dmitruk & Gomez 1997; Buchlin & Velli 2007; Rappazzo
et al. 2008). The present work demonstrates that Alfvén wave
turbulence can occur both in the chromosphere and in the corona,
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Figure 8. Power spectra and related quantities for the reference model: (a) velocity power spectra, (b) magnetic power spectra, (c) average frequency ω̃ of the
velocity fluctuations, (d) parameter describing the degree of nonlinearity of the waves (ζ⊥ ≡ k⊥v⊥/ω̃). These quantities are plotted as a function of the dimensionless
perpendicular wavenumber a⊥. The different curves indicate different positions along the loop: photospheric base (z = 0, solid curves, diamond), temperature minimum
region (z = 0.50 Mm, dotted curves), chromosphere (z = 1.52 Mm, dashed curves), corona (z = 25.2 Mm, dash-dotted curves).

and can develop even when the photospheric footpoint motions
occur on very small spatial scales (ℓ⊥ < 100 km). The model
can quantitatively explain the observed heating rates in active
regions.

4.2. Power Spectra

The spatial power spectra for velocity and magnetic field
fluctuations are defined in Equation (C4). We computed such
spectra for both the standard reference model (described above)
and for a modified version in which the spatial resolution of
the model was slightly increased. Specifically, the maximum
perpendicular wavenumber amax was increased from 20 to 26,
which causes the number of modes to increase from 92 to 158.
Also, the maximum damping rate was increased by a factor
(26/20)6, so that the damping rate νk for the low wavenumber
modes (ak < 20) is the same as that in the standard model (see
Equation (B13)). We found that the increased spatial resolution
has little effect on the power in the low wavenumber modes,
therefore, the standard model is adequate for most purposes.
Nevertheless, in the following we show results from the modified
version with amax = 26.

Figures 8(a) and (b) show velocity and magnetic power
spectra binned in intervals of the dimensionless wavenumber a⊥
for four heights in the reference model. Specifically, the velocity
power in bin n is given by P̃V,n =

∑
k PV,k , where PV,k is defined

in Equation (C4) and the sum is taken over all modes with ak in
the range n∆a < ak < (n + 1)∆a (n = 0, . . . , 12). Here ∆a = 2
is the bin size in wavenumber space. A similar expression holds
for the magnetic power spectrum P̃B,n. The results shown in
Figure 8 were derived from the last 800 time steps of the
simulation (597 s). The solid curve in Figure 8(a) shows the

velocity power spectrum at the base of the photosphere (z = 0)
and is dominated by the two driver modes with a⊥ = 3.832.
As we move to larger heights, the spectrum is broadened
and the total power is increased. At height z = 1.52 Mm
in the chromosphere, the turbulence has generated a broad
distribution of modes extending up to the maximum available
wavenumber (amax = 26). The dash-dotted curve in Figure 8(a)
shows the power spectrum near the mid-point of the coronal
loop (z = 25.2 Mm) where the level of turbulence is further
enhanced. Figure 8(b) shows the corresponding curves for the
magnetic power spectrum. At the base (z = 0, solid curve) the
magnetic spectrum extends over a broad range of perpendicular
wavenumbers and is very different from the velocity spectrum
at that height. The high wavenumber part of this spectrum is
due to the downward propagation of waves produced in the
chromosphere. The magnetic fluctuations in the corona are much
smaller than those in the lower atmosphere at all wavenumbers.

For each wave mode k and height z, we can also determine the
temporal power spectrum Pk(ω̃, z) of the velocity fluctuations.
Here ω̃ is the wave frequency in radians per second. We compute
this power spectrum by taking the Fourier Transform of the
velocity stream function fk(z, t) with respect to time, and
then multiplying the result by the square of the perpendicular
wavenumber, k⊥ = ak/R(z). The average frequency ω̃k of the
waves can be defined as an average over the power spectrum:

ω̃k(z) ≡
∫ ∞

0 ω̃Pk(ω̃, z) dω̃
∫ ∞

0 Pk(ω̃, z) dω̃
. (57)

We further average these frequencies over modes k to obtain
the average frequency ω̃n(z) for each bin n in wavenumber
space. The three curves in Figure 8(c) show ω̃n for three dif-
ferent heights in the reference model. Note that these average
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Figure 2. (A) Time–distance plot for the time series along the arc highlighted in the middle panel of Figure 1. The pink dashed lines correspond to a propagation
speed of about 500 km s−1. (B) The FFT power along the loop system as a function of frequency for the original timeseries. (C and D) Corresponding plots for the
randomly shuffled time series.
(A color version of this figure is available in the online journal.)

by a factor of three at the loop apex although this is more than
likely a (strong) upper bound.

Looking at the distribution of Fourier power more carefully
reveals an intriguing pattern; at the footpoints, power appears
to be concentrated in the low-frequency part of the domain,
peaking around five minutes, as previously found by Tomczyk
et al. (2007) and Tomczyk & McIntosh (2009). Almost no power
is present in the higher-frequency part of the domain at the loop
footpoints. The distribution of power at both footpoints is also
remarkably similar. At the apex, on the other hand, there is still
a lot of power in the low-frequency range, but there now appears
to be significant power in the high-frequency range.

As a quick, zeroth-order null test, we randomly reshuffle
the observed time series at every point along the loop and the
corresponding time–distance plot is shown in Figure 2(C). There
is no longer any evidence of the criss-cross, herringbone pattern
associated with coherently counter-propagating perturbations.
In the corresponding Fourier power plot (Figure 2(D)), the
intriguing pattern observed in the Fourier power has equally
disappeared and power is more or less uniformly distributed
over the entire frequency range at each point along the loop, as
we would expect for a randomly shuffled timeseries.

Although not shown here, the 2012 April 11 data result in
an almost identical time–distance figure and the same pattern
in the FFT power plot. Given the isolation of the loop system
(as evident from the STEREO/EUVI-B image in Figure 1) we
can be relatively sure that we are studying the same loop system
on 2012 April 10 and 11 and hence, both the presence (i.e.,
generation and propagation) of these waves and the excess in
HF power appear very robust features.

4. HIGH FREQUENCY POWER AT THE LOOP APEX

From Figure 2, there appears to be more high-frequency
power at the loop than one would expect given the power present
at the loop footpoints. To investigate this in more detail, we in-
tegrate the FFT power over three different parts of the frequency
domain. This integrated power as a function of loop length is

plotted in Figures 3(A) and (B) for the original and shuffled time
series, respectively. Low-frequency (LF; black) power is taken
to be at periods longer than eight minutes, medium-frequency
(MF; blue) power corresponds to three to eight minutes and
high-frequency (HF; red) power to periods less than three
minutes. To allow easy comparison, each of the graphs has been
normalized to its own mean. Note that the three parts of the fre-
quency spectrum of the reshuffled timeseries have roughly the
same mean, as would be expected from the random shuffling.

All three curves (for the original timeseries) show higher
power at the loop apex, as already noted earlier. However,
comparing the curves in detail shows that the behavior of the
Fourier power at high frequencies (red curve) does indeed appear
different from the LF–MF part of the spectrum. The HF power
appears to increase along the loop at a greater rate than the LF
and MF power and, at the apex, clearly peaks above the LF
and MF curves. This excess in HF power at the loop apex is
especially clear when comparing with the corresponding curves
for the randomly shuffled time series. These (shuffled) curves
show roughly the same behavior along the loop for the three
different parts of the frequency domain, as expected from the
random nature of the timeseries shuffling. Again we note that
the behavior in both loop legs is remarkably symmetric, for all
parts of the frequency domain.

To confirm our findings, we now look at the Fourier power
as a function of frequency, plotted in Figures 3(C) and (D). The
black dashed lines correspond to the lower parts of the loop
(with the power integrated over the first and last 20 grid points
along the loop, respectively). The solid black line represents the
average of the footpoint power (i.e., of the two dashed curves)
whereas the solid red line represents the FFT power at the apex
of the loop (integrated over the middle 20 grid points). To be
able to compare the different curves directly, the Fourier power
at each position along the loop was normalized to the total FFT
power at that position before integrating over the relevant grid
points. This normalization removes the increase in FFT power
near the loop apex due to superposition and/or gravitational
stratification but does not alter the gradient of the power as a
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• Heating: Fading in cool line (104 K), subsequent 
appearance in hot line (105 K)

• POS motion out-of-phase with LOS velocity
• Thread-like structure
➡ Explained with 3D MHD transverse wave model: 

KHI + resonant absorption (current model)

Hinode/SOT（Ca II, 10,000 K)

IRIS/SJI (Si IV, 100,000)

「ひ
の

可
視

光
画

像
（J

A
XA

/国
立

天
文

台
）

「I
RI

S」
紫

外
線

画
像

（N
A

SA
）

200 s

x-t diagram

104 K

105 K

逸させる方法として、「共鳴吸収」「位相混合」「サイクロトロン共鳴」などの物理過程が考えられて
いますが、観測的に捉えることは困難とされてきました。「ひので」は空間分解能力が高く、微細
な構造の動きを世界最高レベルで捉えることができますが、観測できるのは上下方向の動きの
みで、奥行き方向の動き（我々に近づいたり遠ざかったりする方向）はわからず、アルヴェン波の散
逸に関連する決定的な物理情報を得ることができません。

そこで今回、「ひので」に加え、2013年に打ち上げられた NASA の太陽観測衛星「IRIS」を用い
て、散逸過程の解明に迫りました。「IRIS」は、「ひので」の観測を踏まえて提案・開発された衛星
で、「ひので」と同等の空間分解能力で紫外線の分光観測を行います。これにより、奥行き方向の
動きを捉えることができ、「ひので」による上下方向の動きと組み合わせることで、太陽大気の運
動を詳細に調べることが可能となりました。

2013年10月19日、両衛星による共同観測を実施し、 コロナ中に浮かぶプロミネンスのデータ
を取得しました。「ひので」の観測からは、プロミネンスを構成する磁力線の上下振動が複数検出
されましたが、その振動箇所における奥行き方向の運動は、通常想定される振動パターンとは異
なったものでした。通常の振動パターンとは、上下振動の最上点と最下点で速度ゼロ、中心位置
で速度最大となるものを指しますが、今回観測されたものは最上点と最下点で最大速度、中心
位置で速度ゼロとなるものでした。

我々は、この特異な動きは「共鳴吸収」による波動散逸の結果ではないかと考えました。そこで、
波動に伴うプロミネンス振動の 3次元シミュレーションを実施し、磁力線の動きを再現しました。
このシミュレーションから、磁力線の振動エネルギーの一部は共鳴吸収により磁力線表面の運動
に変換され、その結果として振動が徐々に減衰していくことがわかりました。また、疑似観測デー
タを作ると、上下振動に対する表面運動のパターンが、観測された奥行き方向の動きに対応する
ことが明らかになりました。よって、観測された振動パターンは、共鳴吸収に伴う磁力線の表面運
動と解釈できます。また、この運動は磁力線表面に無数の小さな渦を作り、その渦がエネルギー

Motion of prominence plasma crossing the slit
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Signatures of resonant absorption
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Decay-less oscillations

8

Decay-less oscillations: damping+continuous low-amplitude harmonic 
driver?

S. Anfinogentov et al.: Persistent kink oscillations

Fig. 1. Left: snapshot of the AR NOAA 11654 from SDO/AIA at 171 Å. The analysed loops are labelled with different colours and by increasing
numbers.The solid circle on the loops with numbers mark the position of the slits where time-distance maps have been extracted. Right: a view
from STEREO/EUVI-A at 195 Å of the active region of interest. The red meridian marks the limb position as seen from the SDO (or Earth)
perspective.

Table 1. Parameters of transverse loop oscillations.

Loop Slit number Length Slit position Amplitude [ξ] Period [P] Velocity amplitude [v] Time
[Mm] [Mm] [Mm] [s] [km s−1] [hh:mm]

1 20 438 131 (30 %) 0.13 272 1.5 00:29
2 47 447 185 (41 %) 0.24 480 1.5 02:03
2 54 447 228 (51 %) 0.30 620 1.5 05:50
3 34 445 173 (39 %) 0.12 548 0.7 02:02
3 47 445 227 (51 %) 0.39 512 2.4 01:55
3 54 445 254 (57 %) 0.14 384 1.1 00:37
4 41 215 85 (39 %) 0.21 259 2.6 01:29
4 51 215 96 (45 %) 0.23 323 2.2 01:56
4 51 215 96 (45 %) 0.19 262 2.2 04:19
4 51 215 96 (45 %) 0.36 266 4.2 04:10

Notes. Estimated oscillation parameters. The loop number corresponds to the loops marked in Fig. 1. The second column shows the number of the
slit where the oscillations are most evident. The loop length is given in the third column. The distance between the slit and the western footpoint
of the loop is shown in the fourth column. The fifth and six columns give the displacement amplitude and the oscillation period, respectively. The
estimated velocity amplitude is provided in the sixth column. The last column gives the start time of the analysed oscillation.

The positions of the loop edges determined by this method are
marked with red dots in Fig. 3. The loop edge positions were
then fitted with a sine function to obtain its periods and am-
plitudes with the CURVEFIT function. The fitted oscillations are
shown with white lines in Fig. 3.

The measured oscillation parameters are presented in
Table 1. The displacement amplitudes of the oscillations are
found to be below 1 Mm in all cases. The periods range be-
tween 260–620 s (4−11 min). If one considers the displacement
to follow the simple harmonic pattern, ∼ξ sin(2πt/P), where ξ
is the displacement amplitude and P is the period, then the time
derivative of this dependence gives the velocity amplitude of the
oscillation, 2πξ/P. For the observed periods and displacements,
the velocity amplitude ranges from 0.7 to 4.2 km s−1 for different

loops. This value is consistent with the previous estimate, for in-
stance about 30 km s−1 in Tomczyk et al. (2007), 5 km s−1 in
McIntosh et al. (2011), and 1.6 km s−1 in Tian et al. (2012).

3.2. Cross-correlation analysis

The determination of the oscillation phase at different segments
of the loops allows us to assess whether the oscillations are
standing or propagating, and to distinguish between the fun-
damental (also called global) mode (with the highest perturba-
tion at the loop apex) and the second longitudinal harmonic
(with a node at the loop apex and two anti-phase maxima in
the loop legs). This requires measuring the phase delay between
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Fig. 3. Time-distance maps for the analysed loops at different positions (slit number) along the loop paths. The most noticeable oscillations were
fitted with a sine function to define their parameters. Red dots indicate the positions of the loop edge estimated by the Gaussian fitting to the partial
derivative of the time-distance plot in transverse direction. The white lines show the best-fitting sinusoidal functions.

harmonic oscillator. The period of the natural oscillation can be
estimated as 2L/CK, where L is the loop length and CK is the
kink speed determined by the Alfvén speeds inside and outside
the loop. The observed fact that different loops oscillate with
different periods are consistent with this interpretation. The ob-
served variation of the oscillation period of the same loop in
different time intervals can be attributed to the slowly varying
evolution of the loop, for example an increase or decrease in
the plasma density that affects the Alfvén speed. Also, longer
loops not necessarily have longer periods of kink oscillations,
because the top of a longer loop can be situated higher in the
corona (accounting for the effect of the loop plane inclination
with respect to the surface of the Sun) where the density is lower

and hence the kink speed higher. The non-resonant continuously
operating driver can be attributed, for example, to the granulation
or super-granulation motions that excite the kink oscillations at
the loop footpoints. Theoretical analysis of the excitation of nat-
ural oscillations by the random motion of footpoints shows its ef-
ficiency (e.g. De Groof & Goossens 2000). A similar behaviour
can occur in the case of the periodic shedding of Alfvén vortices
(e.g. Nakariakov et al. 2009). The observed life-time of the os-
cillations is likely to be determined by the observational condi-
tions instead of any physical damping. However, the balance be-
tween the driving and damping is a necessary ingredient of this
model (see Nisticò et al. 2013, for discussion). The oscillations
can be damped by resonance absorption, for instance. Despite
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Fig. 3. Time-distance maps for the analysed loops at different positions (slit number) along the loop paths. The most noticeable oscillations were
fitted with a sine function to define their parameters. Red dots indicate the positions of the loop edge estimated by the Gaussian fitting to the partial
derivative of the time-distance plot in transverse direction. The white lines show the best-fitting sinusoidal functions.

harmonic oscillator. The period of the natural oscillation can be
estimated as 2L/CK, where L is the loop length and CK is the
kink speed determined by the Alfvén speeds inside and outside
the loop. The observed fact that different loops oscillate with
different periods are consistent with this interpretation. The ob-
served variation of the oscillation period of the same loop in
different time intervals can be attributed to the slowly varying
evolution of the loop, for example an increase or decrease in
the plasma density that affects the Alfvén speed. Also, longer
loops not necessarily have longer periods of kink oscillations,
because the top of a longer loop can be situated higher in the
corona (accounting for the effect of the loop plane inclination
with respect to the surface of the Sun) where the density is lower

and hence the kink speed higher. The non-resonant continuously
operating driver can be attributed, for example, to the granulation
or super-granulation motions that excite the kink oscillations at
the loop footpoints. Theoretical analysis of the excitation of nat-
ural oscillations by the random motion of footpoints shows its ef-
ficiency (e.g. De Groof & Goossens 2000). A similar behaviour
can occur in the case of the periodic shedding of Alfvén vortices
(e.g. Nakariakov et al. 2009). The observed life-time of the os-
cillations is likely to be determined by the observational condi-
tions instead of any physical damping. However, the balance be-
tween the driving and damping is a necessary ingredient of this
model (see Nisticò et al. 2013, for discussion). The oscillations
can be damped by resonance absorption, for instance. Despite
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Fig. 3. Time-distance maps for the analysed loops at different positions (slit number) along the loop paths. The most noticeable oscillations were
fitted with a sine function to define their parameters. Red dots indicate the positions of the loop edge estimated by the Gaussian fitting to the partial
derivative of the time-distance plot in transverse direction. The white lines show the best-fitting sinusoidal functions.

harmonic oscillator. The period of the natural oscillation can be
estimated as 2L/CK, where L is the loop length and CK is the
kink speed determined by the Alfvén speeds inside and outside
the loop. The observed fact that different loops oscillate with
different periods are consistent with this interpretation. The ob-
served variation of the oscillation period of the same loop in
different time intervals can be attributed to the slowly varying
evolution of the loop, for example an increase or decrease in
the plasma density that affects the Alfvén speed. Also, longer
loops not necessarily have longer periods of kink oscillations,
because the top of a longer loop can be situated higher in the
corona (accounting for the effect of the loop plane inclination
with respect to the surface of the Sun) where the density is lower

and hence the kink speed higher. The non-resonant continuously
operating driver can be attributed, for example, to the granulation
or super-granulation motions that excite the kink oscillations at
the loop footpoints. Theoretical analysis of the excitation of nat-
ural oscillations by the random motion of footpoints shows its ef-
ficiency (e.g. De Groof & Goossens 2000). A similar behaviour
can occur in the case of the periodic shedding of Alfvén vortices
(e.g. Nakariakov et al. 2009). The observed life-time of the os-
cillations is likely to be determined by the observational condi-
tions instead of any physical damping. However, the balance be-
tween the driving and damping is a necessary ingredient of this
model (see Nisticò et al. 2013, for discussion). The oscillations
can be damped by resonance absorption, for instance. Despite
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Nisticò+(2013), Anfinogentov+ (2013, 2015),  
Goddard+(2015)

Solar surfaceAnfinogentov+ 2013

•Decayless
•Common
•Standing kink
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Outline

9

Present study:
• Modelling of transverse MHD waves (kink)

- Prominences
- Corona
- Spicules

Need for determination of observational (imaging + spectroscopic) signatures 
of transverse MHD waves and define their role in the solar atmosphere

Observations:
• Alfvénic waves are everywhere: damping & decayless
• Strong amplitudes in chromosphere > Chromospheric heating, small POS & 

LOS v amplitudes in corona <? coronal heating
• Wave energy expected to be in azimuthal motions -> non-thermal line widths
• Alfvénic turbulence in corona?
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Numerical model

10

parameters coronal 
loop

prominence spicule

             [K] 1/3, Ti = 106 1/100, 
Ti = 104

1/100, 
Ti = 104

           [cm-3] 3, 
𝝆i =3x109

10, 
𝝆i =1010

50, 
𝝆i =6x1010

B [G] 22.8 G 18.6 G 14.5 G

ck [km/s] 1574 776 255

               [s] 525 256 245

0.02 0.001 0.01

  [R] 0.2-0.8 0.4 0.4

⇢i
⇢e

, ⇢i

Ti

Te
, Ti

P ⇡ 2L

ck

• 3D MHD simulations of a flux tube oscillating with the kink mode. CIP-MOCCT 
code (Kudoh et al. 1999) with constant resistivity and viscosity

• Grid (x,y,z): 1/4 tube= (512, 256, 100) - (1024, 512, 100) 
• Initial condition: sinusoidal velocity perturbation in x-direction

x
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Be Be
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90° LOS

45° LOS

0° 
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S
oscillation axis

R = 1 Mm

L = 200 R

k =
⇡

L
⇡ 0.015

Amplitude: 
<15 km/s

S,R ⇡ 104 � 107

- Optically thin: FoMo (Van Doorsselaere+ 
2016, Antolin & Van Doorsselaere 2013)

- Optically thick: RH (Uitenbroek 2011)
https://wiki.esat.kuleuven.be/FoMo

Forward modelling

`

�i

spicule 
model

transition region

https://wiki.esat.kuleuven.be/FoMo
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Numerical simulation
Prominence thread - Mg II k intensity Cross-section

2 kinds of motion: transverse+azimuthal
Resonant absorption transfers energy from a transverse (global) wave to 

azimuthal (local) Alfvén waves near the boundary
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Prominence thread

Alfvén 
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Resonance between Alfvén & 
transverse MHD wave

Resonant absorption

12

Ionson 1978, Hollweg+ 1990, Sakurai+ 1991, Goossens+ 1992, 2002, 2012; Van Doorsselaere+ 
2004, Arregui+ 2008, 2011; Verth+ 2010, Soler+ 2010, 2012; Pascoe+ 2010, 2012



Two mechanisms combined
Half 

prominence 
thread

Density cross-sections

magnetic 
field lines

Model: Uchimoto+. 1991; Karpen+ 1993, Ofman+ 1994; Ziegler & Ulmschneider 1997; Terradas+ 
2008, Soler+ 2010

Vortices break-up into 
turbulence, producing 
twisted current sheets

Iso-contours of 
current density
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Resonant absorption & 
onset of K-H instability

• Onset of instability (Zaqarashvili+ 2015)

14

v~14 km/s,  l/R ~ 0.4
P = 255 s, Amp = 414 km

Coronal 
model

P = 515 s, Amp = 711 km

Prominence 
model

v~8 km/s,  l/R ~ 0.4

• KHI vortices obtain momentum from resonant layer
• Non-uniform boundary layer widens, mixing of 

plasma (Fujimoto & Terasawa 1994)
• Multiple vortices & current sheets (Ofman 1994, 2009)
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45° LOS plane

Si IV (~ 105 K)

Mg II k Doppler velocity

fading & thinning in 
chromospheric lines

appears in TR 
lines, broadened

LOS velocity 
out-of-phase 

with POS motion

Observational signatures
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➜ mixing & heating

➜ RA+phase 
mixing
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Comparing with Hinode & IRIS 
observations

Observational results

Simulated Hinode intensity map
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逸させる方法として、「共鳴吸収」「位相混合」「サイクロトロン共鳴」などの物理過程が考えられて
いますが、観測的に捉えることは困難とされてきました。「ひので」は空間分解能力が高く、微細
な構造の動きを世界最高レベルで捉えることができますが、観測できるのは上下方向の動きの
みで、奥行き方向の動き（我々に近づいたり遠ざかったりする方向）はわからず、アルヴェン波の散
逸に関連する決定的な物理情報を得ることができません。

そこで今回、「ひので」に加え、2013年に打ち上げられた NASA の太陽観測衛星「IRIS」を用い
て、散逸過程の解明に迫りました。「IRIS」は、「ひので」の観測を踏まえて提案・開発された衛星
で、「ひので」と同等の空間分解能力で紫外線の分光観測を行います。これにより、奥行き方向の
動きを捉えることができ、「ひので」による上下方向の動きと組み合わせることで、太陽大気の運
動を詳細に調べることが可能となりました。

2013年10月19日、両衛星による共同観測を実施し、 コロナ中に浮かぶプロミネンスのデータ
を取得しました。「ひので」の観測からは、プロミネンスを構成する磁力線の上下振動が複数検出
されましたが、その振動箇所における奥行き方向の運動は、通常想定される振動パターンとは異
なったものでした。通常の振動パターンとは、上下振動の最上点と最下点で速度ゼロ、中心位置
で速度最大となるものを指しますが、今回観測されたものは最上点と最下点で最大速度、中心
位置で速度ゼロとなるものでした。

我々は、この特異な動きは「共鳴吸収」による波動散逸の結果ではないかと考えました。そこで、
波動に伴うプロミネンス振動の 3次元シミュレーションを実施し、磁力線の動きを再現しました。
このシミュレーションから、磁力線の振動エネルギーの一部は共鳴吸収により磁力線表面の運動
に変換され、その結果として振動が徐々に減衰していくことがわかりました。また、疑似観測デー
タを作ると、上下振動に対する表面運動のパターンが、観測された奥行き方向の動きに対応する
ことが明らかになりました。よって、観測された振動パターンは、共鳴吸収に伴う磁力線の表面運
動と解釈できます。また、この運動は磁力線表面に無数の小さな渦を作り、その渦がエネルギー
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Strand-like structure in the corona

v < 15 km/s v < 3 km/s
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loop 
apex

loop footpoint

Fine strand-like structure in the corona from MHD transverse oscillations 3

a value within 7 % of that predicted by linear theory from
resonant absorption e↵ects. Fig. 2 shows the time evolu-
tion of the oscillation. The small perturbation generates
nonlinear e↵ects that can be appreciated at times close
to maximum displacement, as slight deformations of the
loop’s cross-section. This can be seen in the first col-
umn of Fig. 2. After a time t ⇡ 1.5 P (second column
of Fig. 2), where P is the period of the standing wave,
the Kelvin-Helmholtz instability sets in. The instabil-
ity is generated by strong shear velocities close to the
top and bottom boundaries, as shown by the longitudi-
nal component of the vorticity in the third row of Fig. 2.
These shear motions are fueled by the resonant absorp-
tion mechanism, which converts the energy from the kink
mode into azimuthal flows at the boundary layer. Ac-
cordingly, the amplitude of the shear motions near the
boundary is roughly maintained over time as the global
kink mode damps. A linear analysis of our model pre-
dicts the first unstable mode to have an azimuthal wave
number of m = 2, which grows at a rate of 0.23 P . This
is however an upper limit for the length scale of the insta-
bility and the dominant wavenumber usually has smaller
length-scales due to nonlinear e↵ects. From the 3rd col-
umn of Fig. 2 we can see the formation of 8 eddies around
the loop boundary, 4 at each shear layer, corresponding
to an azimuthal wavenumber of m = 3, hence not far
from the theoretical prediction.
The formation of the Kelvin-Helmholtz in these low

velocity amplitude scenarios can be easily understood
from the instability condition. Assuming a zero bound-
ary layer width and no twist for the magnetic field, the
shear in the flow has to satisfy the following condition:

�v

2
> v

2
A,ti(

⇢i

⇢e
+ 1) + v

2
A,te(

⇢e

⇢i
+ 1), (1)

where vA,ti (vA,te) denotes the internal (external) trans-
verse component of the Alfvén speed close to the bound-
ary layer. Replacing by values in the model described
above, we have �v & 0.8 km s�1, which is easily satis-
fied for even the low amplitude model with initial kink
amplitude of 3 km s�1.

3.2. Formation of current sheets

After a few periods of oscillation the original trans-
verse oscillation can barely be detected anymore, and
most of the dynamics have turned azimuthal, concen-
trated around the inhomogeneous boundary layer. This
e↵ect has been well described by resonant absorption the-
ory in which a coupling between the kink and the Alfvén
modes is established (Goossens et al. 2002, 2012; Pascoe
et al. 2010, 2012). The resulting ‘Alfvénic’ oscillations
can be well seen in the vorticity maps (y component)
of Fig. 2. As seen in the figure, as time progresses the
Kelvin-Helmholtz instability significantly distorts the in-
homogeneity layer, spreading the Alfvénic oscillations to
increasingly larger portions of the loop’s cross-section.
One of the main e↵ects of the instability is to generate
very fine density structure together with ubiquitous ve-
locity sheared regions. This fine small scale structure can
be significantly dense. The generated eddies protruding
from the loop can be observed as distinctive emission fea-
tures at the edges of the loop, as shown by the first row
panels of the figure. Furthermore, as shown in the bot-
tom row of Fig. 2, these regions result in small-scale cur-

rent sheets around the flux tube boundary since velocity
shear regions imply shearing of the transverse magnetic
field components.

Fig. 3.— Snapshots of the emission line flux of Fe IX 171.073 Åfor
two small amplitude models considered, 3 km s�1 (right panel) and
15 km s�1 (left panel). Only the first half of the loop is shown. The
times of the snapshots are t = 654 s for the 15 km s�1 amplitude
model, and t = 1410 s for the 3 km s�1 amplitude model.

3.3. Strand-like structure

Fig. 3 shows a snapshot of the emission flux in
Fe IX 171.073 Å, G171(T, n)⇢2, where T , n and ⇢ are
the temperature, electron density and mass density, and
G171(T, n) is the contribution function calculated assum-
ing a coronal abundance. The left and right panels cor-
respond, respectively, to the 15 km s�1 amplitude model
at a time t = 654 s and the 3 km s�1 amplitude model
at a time t = 1410 s. As shown in the top row of Fig. 2,
we can see that for both cases, the eddies generated by
the Kelvin-Helmholtz instability can be observed as dis-
tinctive emission features at the edges of the loop, which
exist over a wide range along the loop (here half the loop
is shown), implying that the velocity shear threshold for
the instability condition is satisfied over most of the loop.
The decrease of intensity along the loop in the higher ve-
locity amplitude case is just an apparent e↵ect, and is
due to the generation of small-scale high density struc-
ture, which ends up having a higher emission line flux
than the central part of the loop.
In Fig. 4 we show the Fe IX 171.073 Å intensity for

the 15 km s�1 amplitude model, obtained by integrat-
ing the emission line flux along specific line-of-sights for
the same time in the simulation as that of Fig. 3. We
choose 3 di↵erent angles, 0�, 45�, and 90�, where the
line-of-sight ray is in a plane perpendicular to the axis of
the loop and where 0� corresponds to a view perpendic-
ular to the oscillation direction. For better comparison
with observations we show the e↵ect of spatial resolution
by applying a Gaussian filter around each intensity pixel
with a FWHM equal to 0.1 R. The figure shows that
the eddies generated by the Kelvin-Helmholtz instability

Antolin, Yokoyama & 
Van Doorsselaere (2014)

• Roll-ups (eddies) along the loop                 
➙  strand-like structure in intensity

• Detection is strongly dependent on 
spatial resolution

• Lifetime for 1 strand ~ 1 period. 
Widths: 0.01 R - 0.5 R
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Strand-like structure
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• Roll-ups (eddies) along the loop + line-of-sight effects
  ➙  strand-like or thread-like structure in intensity images
  ➙ KHI vortices <—> part of prominence threads?
• Lifetime for 1 strand ~ 1 period. Widths: 0.01 R - 0.5 R
• Apparent crossing of strands/threads

v < 15 km/s, l/R ~ 0.4 Coronal model

Prominence model

Hinode/SOT
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slit

Coronal  
loop

• Brightening when KHI 
with strand-like pattern

• Impulsive character at 
times of maximum 
displacement

• Gradual dimming in 171, 
intensity enhancement in 
193

• Thinning in 171, 
enlargement in 193

• Observed damping appears 
different in 171 & 193

Intensity variation

➡ Hotter channel more sensitive to vortex dynamics (and to the resonant flow)

Antolin, De Moortel, Van Doorsselaere, 
Yokoyama (2016, submitted)

Cold line: 
loop core

Hot line: 
loop boundary
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Intensity & loop width variation
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• Double periodicity in intensity 
linked to KHI vortex generation

• Width variation linked to 
centrifugal force or flute modes
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Decay-less oscillations: 
Alfvén waves
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• Damping observed in 171 is not 
observed in 193 at low resolution

• Due to ensemble of correlated 
vortices (which show much less 
damping due to resonance) & 
brightening at maximum 
displacement

S. Anfinogentov et al.: Persistent kink oscillations
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Fig. 3. Time-distance maps for the analysed loops at different positions (slit number) along the loop paths. The most noticeable oscillations were
fitted with a sine function to define their parameters. Red dots indicate the positions of the loop edge estimated by the Gaussian fitting to the partial
derivative of the time-distance plot in transverse direction. The white lines show the best-fitting sinusoidal functions.

harmonic oscillator. The period of the natural oscillation can be
estimated as 2L/CK, where L is the loop length and CK is the
kink speed determined by the Alfvén speeds inside and outside
the loop. The observed fact that different loops oscillate with
different periods are consistent with this interpretation. The ob-
served variation of the oscillation period of the same loop in
different time intervals can be attributed to the slowly varying
evolution of the loop, for example an increase or decrease in
the plasma density that affects the Alfvén speed. Also, longer
loops not necessarily have longer periods of kink oscillations,
because the top of a longer loop can be situated higher in the
corona (accounting for the effect of the loop plane inclination
with respect to the surface of the Sun) where the density is lower

and hence the kink speed higher. The non-resonant continuously
operating driver can be attributed, for example, to the granulation
or super-granulation motions that excite the kink oscillations at
the loop footpoints. Theoretical analysis of the excitation of nat-
ural oscillations by the random motion of footpoints shows its ef-
ficiency (e.g. De Groof & Goossens 2000). A similar behaviour
can occur in the case of the periodic shedding of Alfvén vortices
(e.g. Nakariakov et al. 2009). The observed life-time of the os-
cillations is likely to be determined by the observational condi-
tions instead of any physical damping. However, the balance be-
tween the driving and damping is a necessary ingredient of this
model (see Nisticò et al. 2013, for discussion). The oscillations
can be damped by resonance absorption, for instance. Despite
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Fig. 3. Time-distance maps for the analysed loops at different positions (slit number) along the loop paths. The most noticeable oscillations were
fitted with a sine function to define their parameters. Red dots indicate the positions of the loop edge estimated by the Gaussian fitting to the partial
derivative of the time-distance plot in transverse direction. The white lines show the best-fitting sinusoidal functions.

harmonic oscillator. The period of the natural oscillation can be
estimated as 2L/CK, where L is the loop length and CK is the
kink speed determined by the Alfvén speeds inside and outside
the loop. The observed fact that different loops oscillate with
different periods are consistent with this interpretation. The ob-
served variation of the oscillation period of the same loop in
different time intervals can be attributed to the slowly varying
evolution of the loop, for example an increase or decrease in
the plasma density that affects the Alfvén speed. Also, longer
loops not necessarily have longer periods of kink oscillations,
because the top of a longer loop can be situated higher in the
corona (accounting for the effect of the loop plane inclination
with respect to the surface of the Sun) where the density is lower

and hence the kink speed higher. The non-resonant continuously
operating driver can be attributed, for example, to the granulation
or super-granulation motions that excite the kink oscillations at
the loop footpoints. Theoretical analysis of the excitation of nat-
ural oscillations by the random motion of footpoints shows its ef-
ficiency (e.g. De Groof & Goossens 2000). A similar behaviour
can occur in the case of the periodic shedding of Alfvén vortices
(e.g. Nakariakov et al. 2009). The observed life-time of the os-
cillations is likely to be determined by the observational condi-
tions instead of any physical damping. However, the balance be-
tween the driving and damping is a necessary ingredient of this
model (see Nisticò et al. 2013, for discussion). The oscillations
can be damped by resonance absorption, for instance. Despite
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derivative of the time-distance plot in transverse direction. The white lines show the best-fitting sinusoidal functions.

harmonic oscillator. The period of the natural oscillation can be
estimated as 2L/CK, where L is the loop length and CK is the
kink speed determined by the Alfvén speeds inside and outside
the loop. The observed fact that different loops oscillate with
different periods are consistent with this interpretation. The ob-
served variation of the oscillation period of the same loop in
different time intervals can be attributed to the slowly varying
evolution of the loop, for example an increase or decrease in
the plasma density that affects the Alfvén speed. Also, longer
loops not necessarily have longer periods of kink oscillations,
because the top of a longer loop can be situated higher in the
corona (accounting for the effect of the loop plane inclination
with respect to the surface of the Sun) where the density is lower

and hence the kink speed higher. The non-resonant continuously
operating driver can be attributed, for example, to the granulation
or super-granulation motions that excite the kink oscillations at
the loop footpoints. Theoretical analysis of the excitation of nat-
ural oscillations by the random motion of footpoints shows its ef-
ficiency (e.g. De Groof & Goossens 2000). A similar behaviour
can occur in the case of the periodic shedding of Alfvén vortices
(e.g. Nakariakov et al. 2009). The observed life-time of the os-
cillations is likely to be determined by the observational condi-
tions instead of any physical damping. However, the balance be-
tween the driving and damping is a necessary ingredient of this
model (see Nisticò et al. 2013, for discussion). The oscillations
can be damped by resonance absorption, for instance. Despite
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Nisticò+(2013), 
Anfinogentov+ (2013, 
2015),  
Goddard+(2015)



Doppler velocities & 
line widths

•Apparently decay-less
•Strand-like structure
•Broad arrow-shaped Doppler maps
•Broad line widths at edges
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Coronal  
loop

Fe XII 193 Intensity - Variation along 45° LOS

Fe XII 193 Doppler velocity - Variation along 45° LOS

RA+phase 
mixing

KHI

(Antolin+2016, submitted)
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Decay-less oscillations: Alfvén waves
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Period in 171 ~ 255 s

Period in 193 ~ 243 s

• Oscillation in 193 and 
171 go out-of-phase: 
effect of phase mixing

• Oscillation in 193 reflects 
azimuthal Alfvén wave 
oscillation at boundary

⇢ =
B2P 2

16⇡L2
! n = 1.8⇥ 109 cm�3

➡Combining channels sensitive to different temperatures we can perform high 
resolution seismology

Antolin+ (2016, submitted)
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Effect of resonant absorption

• Larger wavenumbers dominate first for thinner boundaries 
(higher growth rates). “Inverse” cascade.

• No RA in boundary layer -> less kinetic energy in 
boundary layer. Small wavenumbers have lower growth 
rates (no large vortices) 

• No boundary layer: less damping

• Significant difference in dynamics of core & boundary 
layer

l/R ~ 0 l/R ~ 0.4
Coronal model

Fe IX 171l/R ~ 0.4 l/R ~ 0
no RA initiallyResonant absorption (RA)
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Antolin, Schmit, De Pontieu, Pereira (2016, in prep.)

IRIS/FG, Mg II kHinode/SOT, Ca II H
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courtesy of D. Schmit

1 Iris pixel = 0.166”
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IRIS/Hinode observations: spicules

Patrick Antolin IRIS-6@Stockholm, 23/06/2016
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Spicule model

Amp. ~ 12 km/s

Period ~ 245 s

x -
 ax

is

z 
- a

xi
s
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Corona Chromosphere
standing

Strong vorticity 
destroys loop in 

corona  
(Magyar & Van 

Doorsselaere 
2016)



Spicule dynamics

•KHI vortices +RA can explain 
spicular transverse dynamics

•Potential candidate for heating 
signatures

27

SST/CRISP Observations
Rouppe van der Voort+ 2015

Simulated spicule 
cross-section

(Antolin+2016, in prep.)

Si IV
105 K

Mg II k
104 K

Mg II k
Doppler

Mg II k
Line width

standing kink



Spicule dynamics

•Similar features as for the 
prominence and the coronal model

Si IV

Mg II

Mg II
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Spicule model

Amp. ~ 30 km/s

Period ~ 245 s

x -
 ax

is

z 
- a

xi
s
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Corona Chromosphere

Strong vorticity 
destroys loop in 

corona  
(Magyar & Van 

Doorsselaere 
2016)

propagating
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Conclusions 

30

3D MHD model of transverse MHD wave in prominence shows 2 mechanisms at play
Resonant absorption + dynamic (KHI) instabilities = heating
KHI fine structure leads to strand-like structure in intensity images (Antolin+ 2014). 
Thread-like structure/strand-like structure in observations = Alfvénic vortices?
Out-of-phase (90°-180°) behaviour between POS motion in cool lines and hot lines: 
very good match with IRIS/Hinode observations (Okamoto+ 2015, Antolin+ 2015)
Resonant absorption enhances significantly KHI dynamics:  Alfvénic turbulence
Damping in cool lines (probing loop core temperature). Oscillation in hot line can be 
decay-less (probing boundary layer). Due to ensemble of vortices and heating. May 
explain observed decay-less observations (Nisticò+2013, Anfinogentov+2013)
KHI fine structure dependent on boundary layer width & amplitude. Differences in 
damping and phase between cool/hot emission lines: seismology tool
May explain observed spicule transverse dynamics
Model valid for corona, prominences and spicules.

Transverse 
oscillation

Resonant 
flow

Instability 
(turbulence) Mixing+Heating

Evolution of a flux 
tube cross-section
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