Resonant Absorption as a Feeding Mechanism for Alfvénic Turbulence and its Observable Characteristics in the Solar Atmosphere

¹: U. St Andrews, ²: KU Leuven; ³: U. of Tokyo, ⁴: NAOJ, ⁵: LMSAL

Wave generation in the lower atmosphere

- Convective turbulent motion (*Biermann 1946, Schwarzschild 1948*)
- p-mode leakage ('ramp' effect) (*Michalitsanos 1973; Bel & Leroy 1977; Suematsu 1990, De Pontieu*+ 2004)
- Magnetic reconnection
- Large Poynting flux: heating candidates for chromosphere & corona (Uchida & Kaburaki 1974, Wentzel 1974, Narain & Ulmschneider 1996)

Hinode/SOT

I ongitudinai

Transverse

 Strong inhomogeneity & stratification: strong linear & nonlinear mode coupling (*Dewar 1970*, *Stein & Schwartz 1972*, *Cally 1981*, *Hollweg 1982*, *Einaudi 1996*, *Bogdan+2003*): infinite # of modes

Observations of Alfvénic waves in the solar atmosphere

Transverse MHD waves ubiquitous in the solar atmosphere

What is the role of such waves in the solar atmosphere? Are we detecting all the wave power?

Small amplitudes < coronal heating

Large amplitudes > chromospheric heating

(Tomczyk+ 2007, Okamoto+ 2007, De Pontieu+ 2007, Lin 2011, McIntosh+ 2011, Morton+ 2011, Antolin & Verwichte 2011, Okamoto & De Pontieu 2012, Hillier+ 2013, Schmieder+ 2013, Morton & McLaughlin 2014, De Pontieu+ 2014, Anfinogentov+ 2013, Nisticó+ 2013)

Dynamics of spicules

- Ubiquitous jets protruding from the chromosphere into the corona
- 2 types: I magneto-acoustic wave driven (ballistic, v<40 km/s) (Beckers 1968, Sterling 2000) II - Fast disappearance in Ca II H, fast upflow (v<110 km/s), mostly in QS, RBE & RBB on-disc (De Pontieu+ 2007, Rouppe vd Voort 2009, Sekse 2012, 2013)
- New features for type II: Multi-stranded, strong heating, swaying and torsional motions (Suematsu+ 2008, Pereira+2012, Skogsrud+ 2014, De Pontieu+ 2014, Rouppe v.d. Voort 2015)

Observations of Alfvénic waves in the solar atmosphere

Transverse MHD waves ubiquitous in the solar atmosphere (*Okamoto*+2007) Do they play an important role in the solar atmosphere?

Corona: \sim 3-10 km/s Damping often observed heating Hinode/SOT Damping can be caused by resonant wave propagation absorption (mode coupling): transverse magnetic field line waves convert into azimuthal waves solar surface Chromosphere: ~20 km/s (sufficient energy flux)

Alfvénic turbulence

- Large imbalance upward/downward wave energy flux. Increase of high frequency wave power at loop apex -> Alfvénic turbulence? (*De Moortel*+ 2014, *Tomczyk* 2007, *Tomczyk & McIntosh* 2009)
- Significant heating from Alfvénic turbulence (*Van Ballegooijen*+ 2011, *Matsumoto & Suzuki* 2014)
- Large non-thermal line widths may be hiding most of the wave power (*McIntosh & De Pontieu 2012*)

Patrick Antolin

Signatures of resonant absorption

IRIS/SJI (Si IV, 100,000)

(Okamoto+2015, Antolin+2015)

- Heating: Fading in cool line (10⁴ K), subsequent appearance in hot line (10⁵ K)
- POS motion out-of-phase with LOS velocity
- Thread-like structure
- Explained with 3D MHD transverse wave model: KHI + resonant absorption (current model)

「ひの可視光画像(JAXA/国立天文台) 「IRIS」紫外線画像(NASA)

Patrick Antolin

Decay-less oscillations

Decay-less oscillations: damping+continuous low-amplitude harmonic driver?

Outline

Observations:

- Alfvénic waves are everywhere: damping & decayless
- Strong amplitudes in chromosphere > Chromospheric heating, small POS & LOS v amplitudes in corona <? coronal heating
- Wave energy expected to be in azimuthal motions -> non-thermal line widths
- Alfvénic turbulence in corona?

Need for determination of observational (imaging + spectroscopic) signatures of transverse MHD waves and define their role in the solar atmosphere

Present study:

- Modelling of transverse MHD waves (kink)
 - Prominences
 - Corona
 - Spicules

Numerical model

- 3D MHD simulations of a flux tube oscillating with the kink mode. CIP-MOCCT code (Kudoh et al. 1999) with constant resistivity and viscosity spicule
- Grid (x,y,z): 1/4 tube= (512, 256, 100) (1024, 512, 100) $S, R \approx 10^4 10^7$
- Initial condition: sinusoidal velocity perturbation in x-direction

parameters	coronal loop	prominence	spicule	
$\frac{T_i}{T_e}, T_i$ [K]	$1/3, T_i = 10^6$	$1/100, T_i = 10^4$	1/100, $T_i = 10^4$	e
$rac{ ho_i}{ ho_e}, ho_i [ext{cm}^{-3}]$	$3, \rho_{i} = 3x10^{9}$	10, $\rho_{\rm i} = 10^{10}$	50, $\rho_{\rm i} = 6 \times 10^{10}$	90° LOS
B [G]	22.8 G	18.6 G	14.5 G	
$c_k[km/s]$	1574	776	255	y
$P \approx \frac{2L}{c_k} [s]$	525	256	245	- Opti
eta_i	0.02	0.001	0.01	2016, - Opti
ℓ [R]	0.2-0.8	0.4	0.4	<u>http</u>

Forward modelling

- cally thin: **FoMo** (Van Doorsselaere+ Antolin & Van Doorsselaere 2013)
- cally thick: **RH** (Uitenbroek 2011)

s://wiki.esat.kuleuven.be/FoMo

Patrick Antolin

model

Numerical simulation

2 kinds of motion: transverse+azimuthal Resonant absorption transfers energy from a transverse (global) wave to azimuthal (local) Alfvén waves near the boundary

Resonant absorption

Prominence thread

Two mechanisms combined

Resonant absorption & onset of K-H instability

• Onset of instability (*Zaqarashvili*+ 2015)

$$\frac{v_0}{v_{A_i}} > \frac{\pi}{\sqrt{|m|-1}} \frac{R}{L} \sqrt{\left(1 + \left(\frac{B_e}{B_{z_i}}\right)^2\right) \left(1 - \frac{|m|-1}{\frac{\rho_i}{\rho_e} + |m|}\right)}$$

- KHI vortices obtain momentum from resonant layer 🐒
- Non-uniform boundary layer widens, mixing of plasma (*Fujimoto & Terasawa* 1994)
- Multiple vortices & current sheets (*Ofman 1994, 2009*)

z - Current time = 564 s esu cm⁻² s⁻¹] Prominence **X**: T > 1.01 x 10⁶ K 1.5 model 10 ¥_ 1.0 -50.5 -10 0.0 -1.50.5 1.5 -1.0-0.50.0 1.0 x/R

Comparing with Hinode & IRIS observations

Strand-like structure in the corona

Roll-ups (eddies) along the loop → strand-like structure in intensity Detection is strongly dependent on spatial resolution $G_{171}(T,n)\rho^2$ Lifetime for 1 strand ~ 1 period. v < 15 km/sv < 3 km/sloop Widths: 0.01 R - 0.5 R apex 0 % Antolin, Yokoyama & loop footpoint Van Doorsselaere (2014)

Strand-like structure

- Roll-ups (eddies) along the loop + line-of-sight effects
- → strand-like or thread-like structure in intensity images
- → KHI vortices <—> part of prominence threads?
- Lifetime for 1 strand ~ 1 period. Widths: 0.01 R 0.5 R
- Apparent crossing of strands/threads

Intensity variation

- Brightening when KHI with strand-like pattern
- Impulsive character at times of maximum displacement
- Gradual dimming in 171, intensity enhancement in 193
- Thinning in 171, enlargement in 193
- Observed damping appears different in 171 & 193

Hotter channel more sensitive to vortex dynamics (and to the resonant flow)

Patrick Antolin

Antolin, De Moortel, Van Doorsselaere, Yokoyama (2016, submitted)

Fe IX 171 Intensity - Variation along 45° LOS

Intensity & loop width variation

- Double periodicity in intensity linked to KHI vortex generation
- Width variation linked to centrifugal force or flute modes

Decay-less oscillations: Alfvén waves

- Damping observed in 171 is not observed in 193 at low resolution
- Due to ensemble of correlated vortices (which show much less damping due to resonance) & brightening at maximum displacement

2.0

5.0

4.5

Patrick Antolin

21

Doppler velocities & line widths

0 [arcsec]

-2

25

20

15

Time [min]

- Broad arrow-shaped Doppler maps
- Broad line widths at edges

(Antolin+2016, submitted)

to LOS)/R

perp.

0

5

10

Decay-less oscillations: Alfvén waves

Antolin+ (2016, submitted)

Combined Intensities Fe IX & Fe XII - Resolution = 1.0 R - LOS angle = 00°

Period in 171 ~ 255 s

Period in 193 ~ 243 s

- Oscillation in 193 and 171 go out-of-phase: effect of phase mixing
- Oscillation in 193 reflects azimuthal Alfvén wave oscillation at boundary

$$\frac{\rho_b}{\rho_i} = \frac{1}{2} \left(1 + \frac{\rho_e}{\rho_i} \right) \left(\frac{P_b}{P_k} \right)^2$$

$$\rightarrow n = 1.8 \times 10^9 \text{ cm}^{-3}$$

Combining channels sensitive to different temperatures we can perform high resolution seismology

Patrick Antolin

Effect of resonant absorption

- Larger wavenumbers dominate first for thinner boundaries (higher growth rates). "Inverse" cascade.
- No RA in boundary layer -> less kinetic energy in boundary layer. Small wavenumbers have lower growth rates (no large vortices)
- No boundary layer: less damping

to LOS)/R

to LOS)/R

Significant difference in dynamics of core & boundary
 <u>layer</u>
 Patrick Antolin

IRIS/Hinode observations: spicules

Antolin, Schmit, De Pontieu, Pereira (2016, in prep.)

Time 1701 s

Patrick Antolin

26

Spicule dynamics Mg II

•Similar features as for the prominence and the coronal model

Patrick Antolin

29

Conclusions

- * 3D MHD model of transverse MHD wave in prominence shows 2 mechanisms at play
- Resonant absorption + dynamic (KHI) instabilities = heating
- * KHI fine structure leads to strand-like structure in intensity images (Antolin+ 2014).
 Thread-like structure/strand-like structure in observations = Alfvénic vortices?
- Out-of-phase (90°-180°) behaviour between POS motion in cool lines and hot lines: very good match with IRIS/Hinode observations (Okamoto+ 2015, Antolin+ 2015)
- Resonant absorption enhances significantly KHI dynamics: Alfvénic turbulence
- Damping in cool lines (probing loop core temperature). Oscillation in hot line can be decay-less (probing boundary layer). Due to ensemble of vortices and heating. May explain observed decay-less observations (*Nisticò+2013, Anfinogentov+2013*)
- KHI fine structure dependent on boundary layer width & amplitude. Differences in damping and phase between cool/hot emission lines: seismology tool
- May explain observed spicule transverse dynamics
- Model valid for corona, prominences and spicules.

Thank you for your attention!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 647214).

IAUS 327 @ Colombia

- Deadline for early registration is July 4
- www.iaus327.unal.edu.co

