IRIS observations and modeling of the chromosphere and TR/corona

Bart De Pontieu Lockheed Martin Solar & Astrophysics Laboratory

Thanks to Juan Martinez-Sykora, Milan Gosic, Don Schmit, Ineke De Moortel

Outline of the Talk

I. Quiet Sun Dynamics and Heating
a. Magneto-acoustic shock waves
b. Granular-scale magnetic fields

2. Active Region Dynamics
a. Magneto-acoustic shock waves and dynamic fibrils
b. Chromospheric dynamics and non-equilibrium TR ionization

3. Spicules and Alfven Waves

a. Formation of spicules

b. Heating to coronal temperatures

c. Alfven wave generation

Martinez-Sykora et al., 2016 See talk by Juan Martinez-Sykora

Martinez-Sykora et al., 2016 See talk by Juan Martinez-Sykora

Martinez-Sykora et al., 2016 See talk by Juan Martinez-Sykora

Martinez-Sykora et al., 2016 See talk by Juan Martinez-Sykora

Brightenings similar in all SJIs and Ca II H (SST)

Brightenings similar in all SJIs and Ca II H (SST)

Brightenings similar in all SJIs and Ca II H (SST)

Brightenings similar in all SJIs and Ca II H (SST)

Martinez-Sykora et al., 2015

Brightenings similar in all SJIs and Ca II H (SST)

Brightenings similar in all SJIs and Ca II H (SST)

Many brightenings caused by chromospheric shock waves

No significant time delays between brightenings

Typically very little TR emission: chromospheric (continuum) shocks

Granular fields are weak, but total flux emerging over whole Sun is enormous Martinez Gonzalez & Bellot Rubio (2009), Ishikawa et al. (2009,2010)

Significant fraction of granular fields estimated to reach chromosphere within 5 min: chromospheric energy flux density of 10⁶-10⁷ erg/cm²/s (Martinez-Gonzalez et al., 2010)

Martinez-Sykora et al., 2015

Significant fraction of granular fields estimated to reach chromosphere within 5 min: chromospheric energy flux density of 10⁶-10⁷ erg/cm²/s (Martinez-Gonzalez et al., 2010)

Granular fields are weak, but total flux emerging over whole Sun is enormous Martinez Gonzalez & Bellot Rubio (2009), Ishikawa et al. (2009,2010)

Significant fraction of granular fields estimated to reach chromosphere within 5 min: chromospheric energy flux density of 10⁶-10⁷ erg/cm²/s (Martinez-Gonzalez et al., 2010)

Chromospheric impact of granular-scale fields from cancellation

Chromospheric impact of granular-scale fields from cancellation

Automated tracking of photospheric magnetic fields shows that: in addition to emergence, cancellation plays a significant role in the chromospheric dynamics

Cancellation leads to significant heating in IRIS slit-jaw channels (chromospheric continuum? Si IV TR?) Brightenings typically precede photospheric cancellation by several minutes

Cancellation leads to significant heating in IRIS slit-jaw channels (chromospheric continuum? Si IV TR?) Brightenings typically precede photospheric cancellation by several minutes

Cancellation leads to significant heating in IRIS slit-jaw channels (chromospheric continuum? Si IV TR?) Brightenings typically precede photospheric cancellation by several minutes

Cancellation leads to significant heating in IRIS slit-jaw channels (chromospheric continuum? Si IV TR?) Brightenings typically precede photospheric cancellation by several minutes

- 44% of cancellations lead to brightenings in IRIS slit-jaw channels
- Typical lifetimes of order 5 minutes
- Suggests at least chromospheric heating, possibly TR heating

Impact of granular fields on TR dynamics/energetics

2015-07-12

20 Mm

courtesy of Don Schmit

2015-07-12

Impact of granular fields on TR dynamics/energetics

courtesy of Don Schmit

Impact of granular fields on TR dynamics/energetics

Si IV brightness in QS strongest near network But significant rise far away from network: effect of weak fields?

Martinez-Sykora et al., 2016

See talk by Juan Martinez-Sykora

Martinez-Sykora et al., 2016

See talk by Juan Martinez-Sykora

Martinez-Sykora et al., 2016

See talk by Juan Martinez-Sykora

Martinez-Sykora et al., 2016

See talk by Juan Martinez-Sykora
Impact of the chromosphere on the outer atmosphere What drives the dynamics of the transition region spectral lines?

Active region plage: dynamic fibrils (type I spicules) often associated with Si IV brightenings

Skogsrud et al., 2015

Impact of the chromosphere on the outer atmosphere What drives the dynamics of the transition region spectral lines?

Active region plage: dynamic fibrils (type I spicules) often associated with Si IV brightenings

Skogsrud et al., 2015

Active region plage: dynamic fibrils (type I spicules)

Active region plage: dynamic fibrils (type I spicules)

Active region plage: dynamic fibrils (type I spicules)

Numerical Simulations

2D/3D radiative MHD simulations show that magneto-acoustic slow-mode shocks in low-beta environment lead to dynamic fibrils and quiet Sun mottles

(Hansteen et al., 2006, De Pontieu et al., 2007, Rouppe van der Voort et al., 2007, Martinez-Sykora et al., 2009)

Dynamic fibrils (type I spicules) often associated with Si IV brightenings Skogsrud et al., 2015

Transition Region response to dynamic fibrils: Si IV brightening, blueshift and line broadening

Si IV spectra clearly related to magneto-acoustic shock waves in chromosphere

Combined λ -t plots of Mg IIh and Si IV reveal a frequent connection of Si IV emission/ broadening with shock passage in magnetized regions.

Transition Region response to dynamic fibrils: Si IV brightening, blueshift and line broadening

Non-equilibrium ionization

Ionization equilibrium

Emission

Wider temperature range leads to larger range of velocities along line-of-sight, and thus non-thermal line broadening, especially during shock passage

Wider temperature range leads to larger range of velocities along line-of-sight, and thus non-thermal line broadening, especially during shock passage

Wider temperature range leads to larger range of velocities along line-of-sight, and thus non-thermal line broadening, especially during shock passage

Wider temperature range leads to larger range of velocities along line-of-sight, and thus non-thermal line broadening, especially during shock passage

Chromospheric dynamics from type I spicules lead to non-equilibrium ionization in transition region

De Pontieu et al., 2015

Chromospheric dynamics from type I spicules lead to non-equilibrium ionization in transition region

De Pontieu et al., 2015

Impact of chromospheric shocks on TR may help explain:

• apparent invariance of non-thermal line broadening to spatial resolution

Chromospheric dynamics from type I spicules lead to non-equilibrium ionization in transition region

De Pontieu et al., 2015

Martinez-Sykora et al., 2016

Impact of chromospheric shocks on TR may help explain:

- apparent invariance of non-thermal line broadening to spatial resolution
- non-equilibrium ionization in TR and Si/O intensity anomalies

Chromospheric spicules are heated to transition region temperatures

Type II spicules are heated and much more violent than type I spicules

Heating timescales of order ~1 min

Ca II H spicules are the initial, rapid phase of violent upward motions... Followed by Mg II k and Si IV spicules which are the spatio-temporal extensions of Ca II H

Chromospheric spicules are heated to transition region temperatures

Type II spicules are heated and much more violent than type I spicules

Heating timescales of order ~1 min

Ca II H spicules are the initial, rapid phase of violent upward motions... Followed by Mg II k and Si IV spicules which are the spatio-temporal extensions of Ca II H

Heating of type II spicules occurs naturally in radiative MHD simulations

Heating of type II spicules occurs naturally in radiative MHD simulations

... heating from ambipolar diffusion of perpendicular currents

Heating of type II spicules occurs naturally in radiative MHD simulations

... heating from ambipolar diffusion of perpendicular currents

Type II spicules are launched by release of magnetic tension

Type II spicules are launched by release of magnetic tension

I. created by interaction of weak and network/plage fields in photosphere

- 2. diffusion of weak fields/tension into chromosphere through ambipolar diffusion
- 3. amplification of tension because of ambipolar diffusion
- 4. violent release of tension above beta=1 layer

Synthetic observations from modeled type II spicules match observations

See talk by Juan Martinez-Sykora

Synthetic observations from modeled type II spicules match observations

See talk by Juan Martinez-Sykora

Model predicts heating of plasma to coronal temperatures...

Synthetic observations from modeled type II spicules match observations

See talk by Juan Martinez-Sykora

Model predicts heating of plasma to coronal temperatures...

Propagating Coronal Disturbances (PCDs) related to type II spicules?

Propagating Coronal Disturbances (PCDs) related to type II spicules?

Propagating Coronal Disturbances (PCDs) related to type II spicules!

Propagating Coronal Disturbances (PCDs) related to type II spicules!

How are chromospheric Alfven waves generated?

De Pontieu et al. 2014 Science, Rouppe van der Voort et al. 2015

Martinez-Sykora et al., 2016 See talk by Juan Martinez-Sykora

Type II spicules naturally associated with transverse waves from violent realize of magnetic tension
How are chromospheric Alfven waves generated?

De Pontieu et al. 2014 Science, Rouppe van der Voort et al. 2015

Martinez-Sykora et al., 2016 See talk by Juan Martinez-Sykora

Type II spicules naturally associated with transverse waves from violent realize of magnetic tension

How are chromospheric Alfven waves generated?

De Pontieu et al. 2014 Science, Rouppe van der Voort et al. 2015

Martinez-Sykora et al., 2016 See talk by Juan Martinez-Sykora

Type II spicules naturally associated with transverse waves from violent realize of magnetic tension

Conclusions

I. Quiet Sun Dynamics and Heating

a. Magneto-acoustic shock waves important contributorsb. Granular-scale magnetic fields lead to chromospheric heating

2. Active Region Dynamics

a. Magneto-acoustic shock waves and dynamic fibrilsb. Chromospheric dynamics and non-equilibrium TR ionization

3. Spicules and Alfven Waves

- a. Formation of spicules explained...
- b. Heating to coronal temperatures observed and explained!
- c. Alfven wave generation explained...