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Problem formulation

• hydrodynamic and radiative response of the solar
atmosphere to the heating by the particle beams

• 1D scenario

• describe state and evolution of plasma along a
single loop

• compute time evolution of continuum and line
profiles of H, Ca II, and Mg II

Inital hydrostatic atmospheres

• modified VAL C

• atmosphere in equilibrium
from RADYN (extra heating
at the bottom)
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Flarix: non-LTE RHD code

• developed at AsI in Onďrejov, CR (Heinzel, Karlický, Moravec, Varady)

HD

• standard set of 1D HD equations

• advection, Spitzer thermal conduction

• flare heating is given by the beam energy deposit

Beam heating

• modelled by a test particle approach

• power-law beams

• alternatively, the beam energy deposit calculated according to
Hawley & Fisher (1994)

• optionally the return current, secondary re-acceleration

• hard X-ray emission of the beam

• Varady et al. (2014)



Flarix: non-LTE RHD code

Non-LTE radiative tranfer

• 1D plane parallel atmosphere in the lower part of the loop

• H, Ca II, and MgII in detail using 5-level + continuum atomic models

• H Lyα and Lyβ treated in CRD with a limited wavelength range to mimic
PRD

• MALI method (preconditioning of radiative rates)

• equations of statistical equilibrium (ESE)
• solved together with radiative transfer eq. and conservation eq.
• time-dependent ESE for H atom
• linearised with respect to the level populations and electron density

(H atom)
• ESE for Mg II and Ca II computed using the current time-dependent

electron densities

• Varady et al. (ITPS, 2010), Kašparová et al. (A&A, 2009)



Comparison with RADYN

RADYN

• 1D non-LTE RHD code
(Carlsson & Stein, 1997)

• main differences from Flarix
• adaptive spatial grid
• fully implicit scheme to solve linearized

equations
• more atoms computed in detail (e.g. He)
• analytical formula or Fokker-Planck

approach for the beam heating

Test model

• analytical heating by an electron beam

• identical initial atmosphere (VAL C)

• only H and Ca II computed in detail

• reasonably good agreement at all times

RADYN Flarix
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Time evolution - Mg II k line

Time modulation: gradual versus pulse beam heating

• 2 time profiles of 20 s
duration

• the same integrated beam
flux: 1011 erg cm−2

• the line intensity follows
the beam flux time
modulation

• peak of the wing intensity
lags behind the line centre
and the beam flux peak

• the same maximum
intensity in both cases
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Mg II radiative losses

• Mg II h and k lines are the main contributors
• not a crucial component in the studied cases
• can exceed CaII losses in some parts of the atmosphere
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Non-thermal collisional rates C nt

• beam electrons can contribute to collisional transitions

Cnt
ij =

∫
F (E )σij(E )dE

• σij(E ) used from F-CHROMA database
• based on GENIE, CHIANTI, IAEA Aladdin
• available for H and selected transitions of Ca II, Mg II, He I, He II

• F (E ) from analytic formula for thick-target model (Battaglia et al., 2012)
• affect lower part of the atmosphere (500 - 700 km) and H atoms mainly
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Non-thermal collisional rates C nt - Mg II k

• Cnt influence depends on the
initial atmosphere

• both the line core and the line
wings can be affected

• C nt change the line wings
even in the heated
atmosphere

• for the Mg II h and k lines the
influence of Cnt is not strong



PRD - partial redistribution

• method of Heinzel and
Hubeny (1983)

• high computational cost

• Mg II k and h lines were
treated in PRD outside of
Flarix

• starting from the level
populations computed
within CRD

• change of Mg II radiative losses



Observations and other modelling

• modelled Mg II h and k lines are
much narrower than the observed:

• Liu et al. (2015)
• Rubio da Costa et al. (accepted

to ApJ)

Rubio da Costa et al. accepted to ApJ, Fig.18
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Liu et al. 2015, Fig.6



Conclusions

• Mg II radiative losses may significanty contribute to total losses
in some parts of the chromosphere

• Cnt play a minor role in Mg II h and k line profiles but are
important for hydrogen and thus for the atmosphere evolution

• Mg II h and k line intensities correlate with the time evolution of
the beam flux

• PRD strongly affects Mg II h and k line profiles, a study is needed
how to mimic it within non-LTE RHD simulations


