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Solar Prominence

Corona
temperature ~10°K
density 108~10° cm™3

Prominence

Cool dense plasma cloud
temperature < 104K
density 10°~1011 cm™3

Berger et al., 2011, Hinode/SOT, Ha

IRIS-6 2016/6/23



Mechanism of Prominence Formation

What is the origin of cool dense plasmas ?

Radiative condensation/Thermal nonequilibrium (instability):
Coronal plasmas are cooled down and condensed by radiative
cooling. (Karpen et al., 2007; Luna et al., 2012; Xia et al.,2012;
Kaneko & Yokoyama,2015; Xia & Keppens, 2016)

Injection, Levitaion:

Chromospheric plasmas are lifted up to coronal height by jet or
emerging flux.

(Chae et al., 2003; Okamoto et al.,2007,2008; Deng et al.,2000 )
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Evaporation-condensation model

Chromospheric evaporation by Localized footpoint heating

» Radiative condensation

Xia et al. (2012)
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Evaporation-condensation model (3D)

Xia & Keppens (2016)

Time= 203.2 min

Chromosphericevaporation
by footpoint heating

1

Enhancement of radiative
coolinginside fluxrope by
injection of high density
plasmas 1

prominence formation by
radiative condensation

1

drainage of prominence to
chromosphere
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Observation of in-situ condensation

Berger et al. (2012) 200 P
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Key steps to radiative condensation

Evaporation-condensation model

* Enhancement of radiation by deposition of high

density plasmas
* Limitingthermal conduction by changing the
direction of thermal flux (in long magnetic loop)

4

Reconnection-Condensation Model

Reconnection and subsequent topological change of
magnetic field can also trigger radiative condensation.
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Reconnection-condensation model (2D)

Kaneko & Yokoyama (2015)
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Initial state formagion of condensation

stratified atmoshere flux fope

thermal equilibrium

relatively dense plasmas at the bottom (strong radiation)
closed field line (limiting thermal conduction)
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Demonstration by 2D simulation
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Feasibility of the model in 3D

5 D 2D domain/l
->Temperature is uniform

perpendicularto 2D plane &Y&Y&Y‘Y‘Y‘

=>Conduction along toroidal )
componentsis ineffective. Y

X
3D 3D

—>Conductionalong
toroidal magnetic field
may suppress thermal
instability.

condensation

ﬁ ._
conduction
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Extension to 3D model

Aim:

Demonstration of reconnection-condensation model by

3D MHD simulationincludingradiative cooling & thermal
conduction

converging
motion

formation of longloop with
dip
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Numerical setting 1/5

Basic equations:

dp
a tv Ve =-rVy, radiative cooling
de ( 5 ) ) 2
a+v-|76=—(e+p)|7-v+\7- kT2bb - VT) —n“A(T) + H 4+ nJ*-,
D _mp thermal conduction heating
e=——, T=-—-,
y —1 kg p
av+ Vv = 1|7 + ! (VXB)XB +
E 1% V= ; p % 8,
oB = —cVXE
Fr
E = 1 ><B+47T77 —_° VxXB
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Numerical setting 2/5

Energy equation:
de ( 3 )
ootV Ve =—(e+p)V-v—n?A(T)+H+nJ>+ V- -\kT2bb-VT

radiative cooling background heating

coolingloss function ‘ ‘

21
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T 02 -; coronaloheatlng reIatele to
o f : magnetic energy density
E 10 2% (e.g. Parker, 1983)
) : :
< 10 24,

104 10° 10 10" 10°
temperature K

IRIS-6 2016/6/23



Numerical setting 3/5

Simulationbox: 24Mm x 40Mm x 120Mm
(point-symmetry at z=60Mm)

Grid size: 120km (uniform)

Scheme

* 4th order Runge-Kutta 40Mm
 4th order central difference

e Artificial viscosity (Rempel, 2012) y

* Hyperbolicdivergence cleaning
(Dedner, 2002)

* Thermal conduction:Super Time Stepping X
(RKL 2nd order, Meyer et al.2012,2014)

solar meeting @ ISEE



Numerical setting 4/5

Initial condition

 magneticfield: linear force-free arcade field (< 6 G)
e stratified underuniformtemperature & gravity
(T = 1MK, n < 2x10° cm™3)

front view side view

[HHHI"[IIHHII'I\IIIHII1IHHHH1HHH
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Numerical setting 5/5

Footpoint motion

converging & anti-shearing motion

the direction in which magnetic shear is reduced
(toroidal componentis reduced)

top view

-40 -20 0 20 40
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Result: top view

Time: 0.0s
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Loop length & temperature
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Sufficientlylongloop ‘ Radiative coolingis not compensated by conduction.
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minimun temperature (K)

minimun temperature (K)

Loop length & temperature
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Summary of our results

Van Ballegooijen & Martens (1989)
converging motion

(a) % ?

 Reconnection-condensationscenario
has been demonstrated, in which
radiative condensationis caused by the
topological change of magnetic field
due toreconnection, not evaporation.

e Sufficientlylongreconnected loops
suffer from radiative condensation.

 Convergingmotion canlead notonly
the formation of flux rope but also the
radiative condensation.
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Observation of filament formation 1/2

Yang et al. (2016)
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Observation of filament formation 2/2

Yang et al. (2016) SDO/AIA 304 & HMI

Cancellation Reconnection
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Discrimination of models by observation

* From which route does the high density plasmas come ?

e How isthe thermal evolution?

Flare — Evaporation \
Reconnection<

/ Condensation
Mag. topology change

Evaparation Evapgration Recornection
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Phase-mixing in Prominence 1/2

Cross-field waves

¥
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Phase mixing of standing
Alfven waves in the flux rope

Kaneko et al. (2015)
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Phase-mixing in Prominence

wavelength @ r=4 Mm Phase-mixing

2.0 T T T ‘
£ 1.5f i e Cross-field wavelength
S decreases with time.
% 10k i * Eigen frequenciesvary
o across magneticfield.
3
= 0.5 , i

A (r.t) = 1 Z2mr High spatiotemporal resolution
a )
00 P | t— til va(r) | of IRIS has advantage to detect
3000 4000 5000 6000 7000 phase-mixing.
time (s)

Kaneko et al. (2015)
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Conclusion

* We demonstrate reconnection-condensation model by 2D & 3D
MHD simulation including radiative cooling & thermal conduction

* In 3D simulation, although thermal conduction alongtoroidal
magnetic components are effective, radiative condensation is
triggered in the dip of sufficiently long helical magneticfield.

* |RIS multiwavelength observation with high spatiotemporalresolution
has advantage for detect the flows & waves associated with
prominence condensations.
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