Star Formation and Feedback in Low Mass Galaxies at z~2

Dawn Erb University of Wisconsin Milwaukee

Danielle Berg Gabriel Brammer Max Pettini Naveen Reddy Gwen Rudie Alice Shapley Chuck Steidel Allison Strom Ryan Trainor

How Galaxies Form Stars, Stockholm University

25 August 2016

Star formation and feedback at $z\sim 2$

Madau & Dickinson 2014

Feedback in low mass galaxies

Low mass galaxies (probably) reionized the universe

Galactic outflows ubiquitous at high redshifts

What are the properties of galactic outflows in low mass galaxies at high redshifts?

Erb 2015

A low mass z~2 galaxy: rest-frame UV spectrum

A low mass z~2 galaxy: rest-frame UV spectrum

A low mass z~2 galaxy: rest-frame UV spectrum

Selecting low metallicity, highly ionized galaxies

Typical metallicities 12+log(O/H) ~ 8.0 (~20% solar)

Most extreme BPT galaxies have strong Lya emission

Erb et al 2016, ApJ in press arXiv:1605.04919

Most extreme BPT galaxies have strong Lya emission

Lya equivalent width distributions

Lya equivalent width distributions

Individual galaxies: a closer look

Erb et al in prep

Individual galaxies: a closer look

Q2343-BX418 $M_{\star} = 2 \times 10^9 M_{\odot}$ SFR = 50 M_{\odot} yr⁻¹ SSFR = 18 Gyr⁻¹ 12 + log(O/H) = 8.08 (T_e) O32 = 9.66

Q2343-BX660 $M_{\star} = 5 \times 10^9 M_{\odot}$ SFR = 23 $M_{\odot} \text{ yr}^{-1}$ SSFR = 4 Gyr⁻¹ 12 + log(O/H) = 8.13 (T_e) O32 = 10.98

O/H, O32 from Steidel et al 2014

Strong UV emission lines

Erb et al in prep

Lya emission profiles

High ionization absorption lines vary in velocity

Low ionization absorption lines vary in strength

BX660: much stronger low ionization absorption

Erb et al in prep

Galaxies with similar metallicities, masses, morphologies and extreme emission line ratios may have significantly different outflow properties and Lya profiles

See talk by Anne Jaskot

Likely due to geometry, covering fraction/ column density of neutral hydrogen Signatures of most extreme objects: High velocity, highly ionized outflow Weak low ionization absorption: low covering fraction of neutral gas Blueshifted Lya emission Most likely LyC emitters?

A low mass, low metallicity lensed galaxy at z~2

Rest-frame optical spectrum from 3DHST grism survey (Brammer et al 2012) Very high EW [OIII] (~2000 Å rest-frame) and H β emission (~500 Å) Very high sSFR ~100 Gyr⁻¹ (~8 Myr to form all stars at current rate)

Rest-frame UV spectrum

Lya emission

Strong UV emission lines

Interstellar absorption lines relatively weak (EW ~ 0.5 - 1 Å), narrow

Weak or no outflows (and $\Sigma_{SFR} = 20 \text{ M}_{\odot} \text{ yr}^{-1} \text{ kpc}^{-1}$)

Berg et al in prep

Kinematics

Berg et al in prep

Stellar + nebular He II emission

Hard ionizing spectrum required

Observations of more galaxies coming soon

Summary: feedback in low mass galaxies at z~2

Among low mass galaxies with similar metallicities and ionization states, feedback properties inferred from interstellar absorption lines and Lya vary widely **Timescales?** Geometric effects? Statistical sample needed

1,000

Erb 2015