

The effect of Galaxy Dynamics on Star formation

Françoise Combes Observatoire de Paris Stockholm, 23 August 2016

Outline

1- Dynamical action of bars in enhancing star formation: where?

2- Interactions of galaxies: how efficient in triggering star formation? Starburst & mergers

3- Environment dynamics: SF enhanced or quenched in groups and clusters

1- Role of bars, non-axisymmetries

Compression of the gas on the leading edge (where the dust lanes are conspicuous) **No compressive turbulence** (only in the interarms) **but solenoidal**

Mach number at the 24pc scale

Renaud et al 2015

No star formation in the bar, but in a ring or extremities of the bar

The orbits along the bar are too rapid, but then the gas accumulates at the end of the bar \rightarrow crowding

Verley et al 2007

Star formation at the end of the bar in the MW

W43 complex, from the agglomeration of clouds, (*Motte et al 2014*, *Nguyen-Luong et al 2011*)

Force separating gas and stars

Renaud et al 2015

Star formation in nuclear rings

NGC 1433: Sy 2 barred spiral, the « Lord of the Rings »

Nuclear starburst + AGN-driven outflow

CO(3-2) with ALMA

Beam = 0.5" = 24pc

A second ring inside the first at ILR

Combes et al 13, 14

2- Impact of interactions on SFR

Very high impact, according to some simulations!

Numerical simulations use recipes, for the sub-grid physics Katz (1992), Mihos & Hernquist (1994, 96) Schmidt law with threshold, with exponent n=1.5

Results depends on disk stability

38.4

Evidence of dynamical triggering

Interacting galaxies have more SF Larson & Tinsley (1978) Colors of interacting galaxies show evidence of recent bursts

ULIRGs are all mergers of galaxies (e.g. Sanders & Mirabel 1996)

Interacting galaxies don't show intense starbursts
 (Bergvall et al 03), or only in their centers
 Interactions: necessary condition, but not sufficient

Radial gas flows due to bars, or spirals (+DW triggering) Molecular gas concentrations, and circumnuclear starbursts (*e.g. Sakamoto et al 1999, Buta & Combes 96, Knapen 2004*)

Mechanisms

Tidal forces → Spiral and bars: torques → radial gas flows

Interacting galaxies appear to have more H_2 content by 4-5 And more concentrated (e.g. Braine & Combes 1993)

The condition of starburst: **accumulating gas in a time short enough that feedback mechanisms have no time to regulate**

Compressive tidal forces

For a spherical density profile in a power-law $\rho(r) \sim r^{-\alpha}$, then the acceleration is in $r^{1-\alpha}$, so the attraction can increase with distance, if $0 < \alpha < 1$

→ the tidal force is compressive Ftid ~ $(1-\alpha)$ r ^{- α} In particular, for a core density (rotation curve V is in r ^{1- $\alpha/2$})

Interactions: observations

Scott & Kaviraj 2014

More SSFR in close pairs **5.3 increase in SSFR for low mass** (10⁸-10¹¹Mo) **and a factor of~2.1** for high mass (10¹¹-10¹³ Mo) Less in cluster environment

As seen in SDSS pairs by *Ellison et al 2008, Patton et al 2013* Until 150kpc separation

Also SF triggering by interaction at higher z : 0.1 < z < 0.6accompanied by asymmetries *Patton et al 2005*

At z=1.2 (COSMOS) more triggered SF in low-mass galaxies (*Ideue, Taniguchi et al 2012*)

Minor mergers are important in global SF

In ETG: 14% of the SFR today
LTG (Sb/Sc) 53%
ETG: SF due to minor mergers
→ 24% of SF in LTG is due to minor mergers

Fraction of the cosmic SF induced by minor mergers = 35%

Origin of the bulge and BH growth?

Kaviraj 2014, SDSS catalog z<0.07

Effects of mergers (major or minor)

SF in general enhanced in major mergers

However, suppressed in minor mergers, for the smallest companion

→Gas heating, stripping at the benefit of the primary

Davies et al 2015 (GAMA) 300 000 galaxies, 20 000 pairs

Minor mergers in ETG: low SFE

Starbursts in dwarfs: due to external interaction

HI in 18 dwarfs

Influence of minor mergers

Direct orbit merger gSb gSb

Gas flows through bars in galaxy interactions

GALMER Di Matteo et al 07

Sd

Sbc

A high trigger In mergers is rare

<10% SF in z=0.6 major mergers For Massive Gal Robaina et al 2009

Gas flows produce starbursts

Gas flows IN and OUT

100kpc size

Gas-rich galaxies, high resolution

Intermediate mass, 65% of gas

Evolution during 400 Myr Perret, Renaud et al 2014

Influence of interaction/merger

Perret, Renaud et al 2014

Star formation modes: main sequence, starburst ?

< 10% of SF in z=0.6 massive galaxies is triggered by major interactions *Robaina et al 2009*

Starburst mode at z=2 Only 10% of the SF *Rodighiero et al 2011* Herschel-GODS

Compatible with the GALMER simulations *Di Matteo et al 2007*

3- Environmental effects

 Spheroids favored at high density, SF quenched
 LBG z=3, morphology-density relation already there at z =3 (Cooke et al 2014)

Mergers in small groups
Then group merge in clusters,
→ ram-pressure, harassment

Environmental quenching

Ram pressure in clusters: **in general slow**: In Virgo, HI deficient, but not H_2 (Kenney & Young 1989) but **can be fast** in exceptional cases: ESO137-001

Jachym et al 2014

Ram-pressure quenching

1all of 80kpc in X-ray ga 40kpc in CO $M(H_2)$ in C =1.5 10⁸Mo

Jachym et al 2014

Slow and fast passage through green valley

 \rightarrow Late-type galaxies slowly run into the green valley, losing their gas reservoirs (t > 1Gyr)

→ Early-type galaxies are rapidly quenched (mergers), and cross quickly the green valley (t < 0.2 Gyr)

Morphological Quenching (~5 Gyr)

Disks only are more unstable

Bulges and central condensations stabilise disks

Toomre parameter $Q = \sigma/\sigma crit$

 σ crit= 3.36 G Σ / κ

Bulge increases κ , and Q If σ and Σ remains constant

Martig et al 2009

Inside out Quenching

quiescent galaxies are redde than their outer parts *Guo et al 2011*

Tacchella et al 2015

Environment and morphology

Mergers of spirals (S+S) show a much larger SFR enhancement than S+E

 \Rightarrow S+S: Twice more gas + collision, not only torques No hot inter-galactic gas

Domingue et al 2016

Control

Star formation and transformation of galaxies into S0

Johnson et al 2016

Virgo cluster: H α + [NII], Kenney et al 2008

Tidal streams in clusters: Virgo

Verdugo et al 2015

CONCLUSION

→ Main sequence: SFE=cst, above $\Sigma_{gas} = 9 M_{\odot}/pc^2$ (tdep ~2Gyr)

➔ Density waves, bars and spirals, gas compression, starbursts in nuclear rings

➔ Starbursts triggered by galaxy interactions and mergers, tdep ~100 Myr

→ Role of environment: trigger by interactions, mergers, but quenching by strangulation, harassment, cluster-wide interactions tdep >10 Gyr