Linking Galactic structure to star formation in the Milky Way

Sarah Ragan Melvin Hoare (University of Leeds)

> Toby Moore Dave Eden (LJMU)

Davide Elia Sergio Molinari (INAF - Rome) Question: How does SF depend on environment?

Hi-GAL: Herschel Infrared Galactic Plane Survey

- Simultaneous five band (70, 160, 250, 350 & 500 μ m) continuum mapping of Milky Way plane (I b I < 1°)
- 900h open time observations, PI: Sergio Molinari

Image: MIPSGAL 24µm | HiGAL 70µm | HiGAL 160µm

A typical Hi-GAL "compact clump"

- Multi-scale source (compact / filament / bubble) extraction Molinari et al. (2016)
- Homogeneous evolutionary classification of compact sources Elia et al. (2013 & in preparation)
- Source radiative transfer modelling (T_{dust} structure)
 PPMAP: Marsh et al. (2015, 2016)
- Distance estimations (kinematic, extinction-based) Russeil et al. (2011)
- Quantification of the role of spiral arms in star formation Ragan et al. (2016)
- Determination of star formation threshold / rate / efficiency Longmore et al. (2013)

FIR spectral energy distributions

Ragan et al. (2012b, A&A, 547, 49) Ragan et al. (2013, A&A, 559, 79)

FIR spectral energy distributions

Ragan et al. (2012b, A&A, 547, 49) Ragan et al. (2013, A&A, 559, 79)

The star-forming fraction (SFF)

$$SFF = \frac{N_{protostellar}}{N_{total}}$$

Ragan et al. (2016, MNRAS, arXiv:1607.07626)

Ragan et al. (2016, MNRAS, arXiv:1607.07626)

The star-forming fraction (SFF)

Ragan et al. (2016, MNRAS, arXiv:1607.07626)

- Sensitivity to low-mass clumps decreases with distance
- More distant clumps more likely to overlap with 70µm component

Ragan et al. (2016, MNRAS, arXiv:1607.07626)

How does the SFF relate to the gas distribution?

How does the SFF relate to the gas distribution?

How does the SFF relate to the gas distribution?

Connecting to large scale trends...

Summary

- 1 / 4 Hi-GAL clumps has a 70µm counterpart.
- Spiral arms are where Hi-GAL sources are concentrated, but there is no enhancement of the star-forming fraction
- The fraction of Hi-GAL clumps with 70µm counterpart decreases gradually with R_{gc} by ~2.6% per kpc
- No single large-scale driving mechanism obviously determines SFF trend
- SFF trend serves as a useful benchmark for simulations including the multiple galactic-scale effects