Spatially Resolved SFR and M* of Local Massive Spiral Galaxies : Understanding the Scatter in Spatially Resolved SFMS

Abdurro'uf & Masayuki Akiyama

Astronomical Institute, Tohoku University, Japan

How Galaxies Form Stars Conference Stockholm, 25 August 2016

Outlines

- Introduction
- Methodology
- Result and Discussion
- Summary

Global/Integrated Star Formation Main Sequence (SFMS)

- The tight SFR M* relation is hold up to high redshift
- The scatter is roughly constant ${\sim}0.34$ dex, independent of redshift and M*
- SFMS has nearly-linear slope with flattened trend in massive end

SFMS relation :

$$\log(\text{SFR}) = \alpha(z)(\log M_{\star} - 10.5) + \beta(z)$$

with $\alpha(z) = 0.70 - 0.13z$ (slope)

 $\beta(z) = 0.38 + 1.14z - 0.19z^2$ (normalization)

Whitaker et al 2012 ApJ **754** L29

Spatially Resolved SFMS Relation

- SFMS relation is preserved in kpc scale
- Spatial scale 0.5-1.5kpc
- Integrated and resolved SFMS have similar characteristic slope and tightness
- Sample : local spiral galaxies (0.005<z<0.03)

log(SFR) = 0.72log(M *) - 7.95

Cano-Díaz et al 2016 ApJ 821 L26

Motivations

- * Study the local variations of sSFR and to understand the origin of scatter in spatially resolved SFMS
- * Study the local variations of sSFR in barred and unbarred galaxies and to look for the indication of secular evolution promoted by bars
- * Establish the method to derive spatially-resolved SFR and M_{*} (in pixels space) of galaxy based on SED fitting → pixelto-pixel SED fitting

Data Sample

- We use data from GALEX and SDSS (7bands, 1344 $\leq \lambda \leq$ 10000 Å)
- Data sample : relatively face-on spiral galaxies, located at 0.01 < z < 0.02, more massive than log(M_{*}[M_☉])>10.5, with total S/N>40 in 7 bands
- Resulted in 93 galaxies sample

MPA/JHU Galaxy Catalog for 0.01<z<0.02

Case Example : M51 Galaxy

Dust Extinction Law : Why Calzetti (2000)?

- MW dust-law (Seaton(1979)+Cardelli(1989)) has "curvy" dust extinction track along FUV-NUV
- Calzetti (2000) is better fitted to spatially resolved SEDs of M51 and our galaxies sample

10 galaxies from data sample (bin space)

Dust extinction curve

Result and Discussion

Integrated and Spatially Resolved SFMS

Spatially resolved SFMS (pixels space)

accounted all galaxies pixels : 375089 pixels

 $\log(SFR) = \alpha \log(M_*) + \beta$

Resolved SFMS in Individual Galaxy : Local Variation of sSFR

- Pixels above SFMS line roughly located in spiral arms region
- While pixels located in underlying disks are residing below SFMS line
- Green points correspond to pixels located in "core" (r<10^{-0.5}half-mass radius)
- Green ellipse correspond to half-mass radius

Local Variation of SFR, M*, and sSFR in Barred and Unbarred Galaxies : Their Role on the Scatter of Resolved SFMS

Local Variation of SFR, M*, and sSFR

- Barred galaxies have more massive core than unbarred galaxies
- Barred galaxies have core sSFR lower than those of unbarred galaxies
- Barred and unbarred galaxies have similar local variation of SFR in all 3 regions

Effect of Local Variation of SFR, M*, and sSFR on Global Values

- Integrated SFR of barred and unbarred galaxies are similar
- There is no significant different of integrated sSFR between barred and unbarred galaxies
- Lower sSFR in core region of barred galaxies doesn't give significant effect toward integrated sSFR
- Barred galaxies are in average more massive than unbarred galaxies

Bar-driven Secular Evolution

Effect of Global/Integrated M* on the Scatter of Spatially Resolved SFMS

Radial Profile of SFR, M*, and sSFR

This result may be consistent with
 "inside-out" scenario of disk galaxies
 formation (e.g., White & Frenk 1991; Kauffmann 1996;
 Mo et al. 1998; Cole et al. 2000)

Effect of Global M* on the sSFR(r) Profile

- sSFR tells about relative ratio of current and past star formation rate
- More massive galaxies have sSFR(r) lower than less massive galaxies in all radius→ Spatially resolved "Downsizing"?

Scatter in the Spatially Resolved SFMS : Effect of Integrated M* on Local sSFR

- There is tendency of local sSFR (of galaxies sample) to have flat trend with local stellar mass density → consistent with spatially resolved SFMS
- There is tendency of local sSFR of more massive galaxies to have lower value than local sSFR of less massive galaxies with the same local stellar mass density

Summary

- * Star formation main sequence relation is locally preserved, with similar slope and scatter (same order) as those of global
- * Local variation of sSFR and global/integrated M* give contribution to the scatter in spatially resolved SFMS
- * Barred galaxies have more massive core and lower sSFR in core than unbarred galaxies
- * Barred galaxies don't show systematic offset in integrated sSFR compare to unbarred galaxies

Thank you very much for your attention

Robustness of Fitting Method – M51 Case

Local Variation of SFR, M_* , and sSFR (1)

 Majority of galaxies sample (local massive spiral galaxies) have SFR_outside > SFR_inside

 The ratio
 (SFR_outside/SFR_inside) of barred galaxies is in average lower than those of unbarred galaxies, with KS-test show they are significantly different (within significant level of 0.05)

"inside" and "outside" regions are divided by effective radius (half-mass radius)

Scatter in the Spatially Resolved SFMS : Effect of Local Variation of SFR on the Scatter of Resolved SFMS

- Location of pixels relative to SFMS relation in each galaxy are maintained in resolved SFMS over all galaxies pixels
- It's local variation of SFR in each galaxy which responsible to the scatter of resolved SFMS over all galaxies pixels
- Relative ratio between SFR of blue points and red points is 0.52 dex

Scatter in the Spatially Resolved SFMS : Effect of Integrated M_{\star} on Local sSFR

- There is tendency of local sSFR (of galaxies sample) to have similar value, flat trend with local stellar mass density → consistent with spatially resolved SFMS
- There is tendency of local sSFR of more massive galaxies to have lower value than local sSFR of less massive galaxies with the same local stellar mass density

Model Interpolation - in 4D (Z,tau,E(B-V),age)

- Parent models (193600) are generated using GALAXEV (Bruzual & Charlot 2003), with parameters :
 - $\circ~Z: 0.004, 0.008, 0.02, and 0.05$
 - \circ Tau : [0.05:2] with delta_tau=0.05
 - E(B-V) : [0:0.6] with delta_color_excess=0.05
 - Age : [0.25:13.75] with delta_age=0.25
- For each metallicity, Model's flux and stellar mass are interpolated using method of tricubic interpolation (in 3 dimension: Tau, E(B-V), and Age), then for some fix values of (tau, E(B-V), and age), cubic spline interpolation is done to interpolate for random metallicity

Cubic Spline interpolation : 1D (Z)

Pixels Binning Technique

- This research used new pixels binning technique which considers 3 criteria :
 - "closeness"
 - "similarity SED's shape" among bin's members ($\chi^2_{12} < \chi^2_{thresh}$)
 - Total S/N of bin > S/N_thresh
- Throughout this research, binning with S/N_thresh=10 and chi-square limit of 30 is used
- Chi-square equation to test similarity of SED's shape :

$$\chi_{12}{}^{2} = \sum_{i} \left(\frac{\left(f_{2,i} - s_{12}f_{1,i}\right)^{2}}{\sigma_{1,i}{}^{2} + \sigma_{2,i}{}^{2}} \right) \text{ with } s_{12} = \frac{\sum_{i} \frac{f_{2,i}f_{1,i}}{\sigma_{1,i}{}^{2} + \sigma_{2,i}{}^{2}}}{\sum_{i} \frac{f_{1,i}{}^{2}}{\sigma_{1,i}{}^{2} + \sigma_{2,i}{}^{2}}}$$

