

A high-z perspective on galaxy growth and star formation _{Stijn Wuyts}

Natascha Förster Schreiber, Reinhard Genzel, Emily Wisnioski, Erica Nelson, Sandro Tacchella, Linda Tacconi, Arjen van der Wel, Pieter van Dokkum & CANDELS, 3D-HST, SINS/zC-SINF, KMOS^{3D} and PHIBSS2 teams

August 2016

Stockholm University: How Galaxies Form Stars

A high-z perspective On Galaxy growth and star formation

Stijn Wuyts

Why study at high-z?

- Witness live where a lot of the 'action' happens
- Different conditions $\dot{M}_{gas} \sim M_{halo}^{1.15} (1+z)^{2.25}$
- Color information of fossil record saturates
- Star formation vs assembly

Outline

• GLOBAL

In what galaxies do stars form?

- Disks, but unlike local disks
- → ubiquitous outflows
- → turbulent ISM
- → clumpy
- → gas-rich

The mass budget of early disks: baryon-dominated at z>2

• LOCAL

Combining multi-wavelength resolved tracers Where within galaxies do stars form? Inside-out growing exponential disks Parallel tracks vs compaction In what galaxies do stars form?

SFGs are <typically> larger than QGs (at same mass and redshift)

SFGs are <typically> larger than QGs (at same mass and redshift)

SFGs are <typically> disks (at least at $\ge 10^{10} M_{\odot}$)

SFGs are <typically> disks (at least at $\ge 10^{10}$ M_o)

... but unlike local disks - Ubiquitous outflows

... but unlike local disks - Turbulent ISM

Kassin+2012; Wisnioski+2015

Elmegreen+05,09; Genzel+2011; Förster-Schreiber+2011; Wuyts+12,13; Guo+12,15

... but unlike local disks - Gas-rich

Mass budget in early disks

Wuyts+2016: Combine M_{star} from U-to-8µm SED modeling, M_{gas} from CO+dust-based gas scaling relations with M_{dyn} from structural + kinematic information to study breakdown of the mass budget within the disk regions of high-z galaxies

Mass budget in early disks

240 star-forming disks @ 0.6 < z < 2.6

Mass budget in early disks

well characterised sampling from underlying population

Mass budget in high-z disks

Stars

Förster Schreiber+09; Barro+14; Burkert+16; Price+16; Stott+16; Contini+16; Lang+16

Redshift evolution

Stellar mass fraction

• Significant room for other mass components

 No decline M_{star}/M_{dyn} with increasing redshift, despite evolution in f_{gas}

Wuyts+16

see also

Förster Schreiber+09; Barro+14; Burkert+16; Price+16; Stott+16; Contini+16; Lang+16

Redshift evolution

1.0 Baryonic mass fraction 0.5 Fully baryon-dominated log(M_{bar}/M_{dyn} 0.0 disks at z > 2-0.5 -1.0Salpeter IMF Chabrier IMF Ο -150.5 1.0 1.5 2.0 2.5 3.0 Wuyts+16 z

see also

Förster Schreiber+09; Barro+14; Burkert+16; Price+16; Stott+16; Contini+16; Lang+16

Σ -dependent breakdown of the mass budget

Mass fraction - surface density relation

Kennicutt-Schmidt relation

Low f_{gas} connect compact SFGs to their z~2 quiescent descendants

Spilker+2016

Where within galaxies do stars form?

Ha in near-exponential disks

Over 2 orders of magnitude, from stacking of 2676 galaxies at z~1 with Ha maps from 3D-HST grism spectroscopy

Nelson+2015

Central depression in Ha EW (of massive galaxies)

Dust gradients in high-z SFGs (1)

Dust gradients in high-z SFGs (1)

Dust gradients in high-z SFGs (2)

z ~ 1.4

$A_{H\alpha}$ (from resolved Balmer decrement) 9.0<log(M)<9.2 9.2<log(M)<9.8 9.8<log(M)<11.0 MW, R,=3.1 SMC, R_v=2.76 3 LMC, R,=3.41 Calzetti, R_v=4.05 Reddy, R_v=2.94 2 A(Hα) 0 3 3 2 0 2 0 2 3 0 1 1 r [kpc] r [kpc] r [kpc]

Nelson+2016

Dust gradients in high-z SFGs (3)

Wide-spread nuclear outflows

Parallel tracks?

Parallel tracks? Or compaction?

Parallel tracks? Or compaction?

Parallel tracks? Or compaction?

(Resolved) KS relation at high z

Spilker+2015: caution when computing Σ with sizes measured at different wavelength <one data point per galaxy>

(Resolved) KS relation at high z

Spilker+2015: caution when computing Σ with sizes measured at different wavelength <one data point per galaxy>

Freundlich+2013: go below 1-1.5" resolution limit by identifying clumps in position-velocity diagram

(Resolved) KS relation at high z

Summary

• GLOBAL

In what galaxies do stars form?

- Disks, but unlike local disks
- → ubiquitous outflows
- → turbulent ISM
- → clumpy
- → gas-rich

The mass budget of early disks: baryon-dominated at z>2

• LOCAL

Combining multi-wavelength resolved tracers Where in galaxies do stars form? Inside-out growing exponential disks Parallel tracks vs compaction