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Monthly Notices

MNRAS 439, 3239-3252 (2014) doi:10.1093/mnras/stu098
Advance Access publication 2014 February 24
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An uncertainty principle for star formation — I. Why galactic star
formation relations break down below a certain spatial scale

J. M. Diederik Kruijssen'* and Steven N. Longmore?

Cluster formation

If a macroscopic correlation is caused by a time-
evolution, then it must break down on small scales
because the subsequent phases are resolved.

Survival

Globular clusters
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s Multi-scale star formation relation
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s Multi-scale star formation relation
.g
S
s 4 This “breakdown” on small scales is observed; results from time-evolution
Clouds & Hll regions in a galaxy:
£ Evolution & spatial distribution
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s Multi-scale star formation relation

s see talk by Heiderman
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s ¥ Cloud-scale star formation relation offset from galactic one
Heiderman+10, Gutermuth+11, Lada+10,12,13, Vutisalchavakul+13,14
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s Multi-scale star formation relation
5 see talk by Heiderman
£
S
s * This offset emerges naturally due to region selection vs galactic averaging
Clouds & Hll regions in a galaxy:
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s Lada+13: there is no global Schmidt law between GMCs
:
8
5 ¥ KL14: (1) makes sense because of unknown time-evolutionary state
(2) there is a wealth of information on SF & FB hidden in the spread
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An uncertainty principle for star formation — I. Why galactic star
formation relations break down below a certain spatial scale

S

§ J. M. Diederik Kruijssen'* and Steven N. Longmore?

S

g The way in which galactic star formation relations
2 : . :

@ depend on the spatial scale is a direct probe of the

physics of star formation on the cloud scale

Globular clusters
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An uncertainty principle for star formation — I. Why galactic star
formation relations break down below a certain spatial scale

S

§ J. M. Diederik Kruijssen'* and Steven N. Longmore?

S

g The way in which galactic star formation relations
2 : . :

@ depend on the spatial scale is a direct probe of the

physics of star\formation on the cloud scale

\

*and cluster!

Globular clusters
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s A multi-scale theory of cloud evolution and star formation in galaxies:
§  Small-scale variations of gas-to-SFR ratio reflect underlying timeline
S Kruijssen & Longmore 14
g Clouds & Hll regions in a galaxy:
Evolution & spatial distribution
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s A multi-scale theory of cloud evolution and star formation in galaxies:
§  Small-scale variations of gas-to-SFR ratio reflect underlying timeline
S Kruijssen & Longmore 14
S
7 Clouds & Hll regions in a galaxy:
Evolution & spatial distribution Gas-to-SFR ratio as a function of spatial scale
g Time
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A multi-scale theory of cloud evolution and star formation in galaxies:
Small-scale variations of gas-to-SFR ratio reflect underlying timeline

Clouds & Hll regions in a galaxy:
Evolution & spatial distribution

Time
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Gas-to-SFR ratio as a function of spatial scale
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s Application to NGC 300
s see talks by Hygate, Haydon
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S
s * Using far-UV and CO(1-0)
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s  Other galaxies yield similar results (but with interesting differences)
:
L2
s
(70}
’ see talk by Schruba see talk by Hygate
5 Kruijssen+ -, Schruba+ Hygate+,
L
S
S
G
NGC300
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= What do these “units” mean in the “hierarchical” & “scale-free” ISM?
= see talks by Klessen, Grasha
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= What do these “units” mean in the “hierarchical” & “scale-free” ISM?
= see talks by Klessen, Grasha
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What do these “units” mean in the “hierarchical” & “scale-free” ISM?
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Kruijssen & Longmore 2014, MNRAS 439, 3239
Haydon+ in prep.

Hygate+ in prep.

Schruba+ in prep.

Multi-scale star formation: conclusions
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4+ Multi-scale model explains difference between cloud & galaxy SF relations

4+ New method to measure fundamental quantities characterising SF & FB

Cluster formation

4+ Molecular clouds live for a few dynamical times

4+ Star-forming regions are gas-poor within a few Myr after massive stars form

Survival

4+ Maximum coherence scale (~ Toomre length) sets “unit” of galactic SF

4+ Cloud-scale star formation efficiency a few % =» how to form bound clusters?

Globular clusters
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s Star cluster formation: classical picture

g

S

5 # Classical picture: bound cluster formation affected by gas expulsion
Hills 80, Lada+84, Geyer & Burkert 01, Lada & Lada 03, Boily & Kroupa 03, Goodwin & Bastian 06,

- Baumgardt & Kroupa 07, Parmentier+08, ...

9 _

g 4 All stars form in clusters v

E A *

S

J et %

o 4 Gas & stars in virial equilibrium ‘%@K—

2 4 Feedback expels remaining gas

>

=

(70}

4 Because SFE is low: cluster expands, possibly becoming unbound

4+ Only ~10% of all star formation ends up in bound clusters

Globular clusters
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No observational evidence for gas expulsion as key mechanism in YMCs

see talk by Longmore
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g % Westerlund | is ~virialised and not expanding Cottaar+12

5

o

5 : L :

o 4 R136 is ~virialised and not expanding Hénault-Brunet+12

E 4+ Arches Cluster is ~virialised and not expanding cClarkson+12
5

(70}

4+ NGC 3603 is ~virialised and not expanding Rochau+10

4+ All YMCs have higher densities than the very densest clouds walker+15,16

Globular clusters
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s  Even without feedback, dense clusters are gas-poor and virialised
:
S
s # Stars form most efficiently at the gas density peaks due to short free-fall time
recall discussion between Longmore & Calzetti before lunch
£ S
2 : = )
e 4 Bound clusters form through gas exhaustion: g =
S free-fall time < feedback timescale - 18
2 observational confirmation: Ginsburg+16 g 1%
E g 'y
o o - "™
= A 1 3
o o K
+ - . Ce
_ L e o1 1.0 o
%’ L Radius [half-mass radii] =
5 3
7 40 ? ? g
o 30F =
Q o
@ 2 :
£ € =op ]
= E
3 z |
E 105- ]
= : ! -
g of__ : .
O 0.0 0.5 1.0 1.5

Virial ratio (0.5=virialised)



Cluster formation and survival across cosmic time
J. M. Diederik Kruijssen — Heidelberg University

s Result applies in “hierarchical” or “scale-free” part of the ISM
=
£
L
s ¥ Each locally-self-gravitating part of the hierarchy could become gas-poor
given a sufficient number of free-fall times
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s What does this mean in the context of galactic-scale star formation?
.E
8
s ¥ Gas density PDF is lognormal, width increases with gas pressure
Vazquez-Semadini 94, Padoan & Nordlund++, Krumholz & McKee++, Federrath & Klessen++,
Hennebelle & Chabrier++, Kainulainen++, Schneider++, etc...
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s What does this mean in the context of galactic-scale star formation?
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s What does this mean in the context of galactic-scale star formation?
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What does this mean in the context of galactic-scale star formation?
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s No miraculous infant mortality, but deterministic long-term survival
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s No miraculous infant mortality, but deterministic long-term survival
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s No miraculous infant mortality, but deterministic long-term survival
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s No miraculous infant mortality, but deterministic long-term survival
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Cluster density > gas density
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s  Fraction of star formation occurring in bound stellar clusters
:
g :
5 o integral of clusters (grey-shaded area)
7 “Cluster formation efficiency”: [' = —
integral of stars (dashed line)
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s  Prediction: cluster formation efficiency increases with gas density
:
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s  Prediction: cluster formation efficiency increases with gas density
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Prediction: cluster formation efficiency increases with gas density
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s Observations: cluster formation efficiency increases with ~gas density
® see talk by Adamo
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s  Observations: cluster formation efficiency increases with ~gas density
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s  What does the mass spectrum of the resulting clusters look like?
:
8
s * Emopirically: mass distribution follows -2 power law with high-mass truncation
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What does the mass spectrum of the resulting clusters look like?

4+ Empirically: truncation mass scales with Toomre mass

Toomre 64; in this context Kruijssen 14c
also see Hughes+13
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s What does the mass spectrum of the resulting clusters look like?
E
8
s ¥ Fragmentation in hierarchical part of the ISM gives -2 power law
Elmegreen & Falgarone 96
5
s 4 Maximum mass scale set by largest scale that can collapse
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Kruijssen+12a, MNRAS 419, 841
Kruijssen 12d, MNRAS, 426, 3008
Kruijssen 14c, CQG, 31, 244006
Adamo+15, MNRAS, 452, 246

Cluster formation: conclusions
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4 Star clusters form at the high-density end of the ISM density spectrum

4+ The information for cluster formation is encoded in the gas properties

Cluster formation

4+ Beyond “infant mortality”:
- gas expulsion affects associations, but does not affect bound clusters
- clusters are no fundamental unit of star formation, but a possible outcome

Survival

4 Cluster masses follow -2 power law with maximum set by Toomre mass

4 Cluster formation efficiency and maximum mass increase with gas pressure

Globular clusters
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s  Classical disruption mechanism: evaporation by two-body relaxation
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Dominant cluster disruption mechanism is tidal shocking by dense gas
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s  Self-consistent formation/disruption of the cluster population in galaxies
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c  Cluster disruption peaks in high-pressure (high-density) environments
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Kruijssen+11, MNRAS, 414, 1339
Kruijssen+12c, MNRAS, 421, 1927
Miholics+16, MNRAS to be subm.

Cluster survival: conclusions
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4 Tidal shocks from molecular gas represent dominant disruption mechanism

4 Cluster disruption faster in higher-pressure environments

Cluster formation

4+ Two-body relaxation-driven evaporation is a second-order effect

4+ Self-consistent simulations of formation & evolution of star cluster population
in galaxies are consistent with the properties of observed cluster populations

Survival
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= Globular cluster formation in the context of galaxy formation & evolution
.g
k)
& 4 Median GC formation redshiftis z~ 3
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5  Globular cluster formation in the context of galaxy formation & evolution
& 4 Median GC formation redshift only just precedes the peak cosmic SFR
'*E lookback time (Gyr)
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< Globular cluster formation in the context of galaxy formation & evolution
o
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5 ¥ High-redshift galaxies have extreme gas pressures relative to local galaxies
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s Local Universe: high-pressure conditions =» massive cluster formation
;é see talk by Longmore
S

5 ¥ Properties of these young massive clusters similar to old globular clusters
c

9 P

= c

: A

5 o

= -]

2 —_—

7 5

G

s

2

=

(72}

M80 NGC1569-A
M ~ 1056 Mg M~ 108 Mg
R~ 1.8 pc R~ 1.6 pc

Globular clusters



n Cluster formation and survival across cosmic time
J. M. Diederik Kruijssen — Heidelberg University

s Local Universe: high-pressure conditions =» massive cluster formation
"é see talk by Longmore
S
s ¥ Properties of these young massive clusters similar to old globular clusters
5
& 4 Occam’s Razor = first questions to ask are:
5
g Could the products of regular cluster formation at high redshift have
o survived until the present day?
- Are these relics consistent with the properties of local GC populations?
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= Two-phase, ‘shaken, then stirred model for GC formation

.g

8

8 YMC formation

(/2]

S

5

=

8

8

E

(&)

_ Time

2

>

t?) tf<irm

e

(]

5
(8] g:
5 2
S S
.g —_
o &



Cluster formation and survival across cosmic time
J. M. Diederik Kruijssen — Heidelberg University

= Two-phase, ‘shaken, then stirred model for GC formation
.§
8
8 YMC formation
(/2]
S
5
=
8
8
E
(&)
_ Time
2
>
® tfcirm
tdisc
-

Rapid disruption
by tidal shocks

Globular clusters
qgL uessliniy



Cluster formation and survival across cosmic time
J. M. Diederik Kruijssen — Heidelberg University

s  Two-phase, ‘shaken, then stirred model for GC formation
:
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s  Two-phase, ‘shaken, then stirred model for GC formation
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Two-phase, ‘shaken, then stirred® model for GC formation

formation Cluster migration
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s Model reproduces the Galactic GC mass function
.g
S
s ¥ Tidal shocks dominate and evaporation is a sub-dominant process
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Resulting cluster population matches z= 0 GC population
Kruijssen 15b

4 GC mass function

c
o
]
©
£
.
o
=
=
L]
-
(7}

4+ Specific frequency (# of GCs per unit field star mass)

Cluster formation

4 Colour/metallicity bimodality

4+ GC system mass — halo mass relation

Survival

4 Consistent with what we know about local-Universe star/cluster formation

= GCs consistent with natural outcome of star formation at high redshift
If GCs formed differently after all: where did the normal clusters go?

Globular clusters
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s Environmental dependence implies that cosmic variance is important
.g
S
s % Need more than analytical model
5
"é 4+ Account for space/time variation of cluster formation, migration & disruption
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= The co-formation of galaxies & GC populations: the E-MOSAICS project
£
S
s ¥ Couple Kruijssen+11,12 “MOSAICS?” cluster formation/evolution models to
the EAGLE SimUIationS E-MOSAICS: MOdelling Star cluster system Assembly In Cosmological Simulations
: ith the EAGLE simulation
g Efeffe“_ n prep' Simulation byJ(\:\cleII Pfeffeer, Diederikslgruijl:sznl,oRoi Crain, Nate Bastian, Joop Schaye
'-g rujssen+ in prep. Gas density and star cluster formation time
£
S 4 First time that the
g formation and evolution
o of the entire cluster
population is modeled
- self-consistently across
2 cosmic history :
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Kruijssen 14c, CQG, 31, 244006

Globular clusters: conclusions Kruilsson 15b. MNRAS, 454 1658
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4+ Simple, end-to-end model reproduces the main GC population observables

4+ GCs natural outcome of normal star/cluster formation in high-redshift discs

Cluster formation

4+ GCs formed and evolved according to the same physics as YMCs

4+ Early, rapid disruption phase by tidal shocks is critical for reproducing
the GC population

Survival

4+ We are now beginning to understand the co-formation of GCs and galaxies

Globular clusters
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Cluster formation across cosmic time
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Cluster formation

trailing tail

Survival
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s  Cluster formation across cosmic time

:

S

s * The physics behind the gas-SF relation across all scales are complex,
but a bottom-up understanding emerges from observations and modelling
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Cluster formation across cosmic time
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4+ The physics behind the gas-SF relation across all scales are complex,
but a bottom-up understanding emerges from observations and modelling

4+ Stellar clusters are a key byproduct of the SF process; out to high redshift,
their formation and survival are governed by universal, ISM-driven physics

Cluster formation

Survival
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