

The Multi-Scale Physics of Star and Cluster Formation in Galaxies across Cosmic Time

J. M. Diederik Kruijssen Heidelberg University

J. M. Diederik Kruijssen – Heidelberg University

Star Formation & ISM

J. M. Diederik Kruijssen – Heidelberg University

J. M. Diederik Kruijssen – Heidelberg University

J. M. Diederik Kruijssen - Heidelberg University

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS 439, 3239–3252 (2014) Advance Access publication 2014 February 24

doi:10.1093/mnras/stu098

An uncertainty principle for star formation – I. Why galactic star formation relations break down below a certain spatial scale

J. M. Diederik Kruijssen^{1★} and Steven N. Longmore²

If a macroscopic correlation is caused by a timeevolution, then it *must* break down on small scales because the subsequent phases are resolved.

→ This "breakdown" on small scales is observed

J. M. Diederik Kruijssen - Heidelberg University

→ This "breakdown" on small scales is observed; results from time-evolution

Clouds & HII regions in a galaxy: **Evolution & spatial distribution**

J. M. Diederik Kruijssen - Heidelberg University

see talk by Heiderman

◆ Cloud-scale star formation relation offset from galactic one Heiderman+10, Gutermuth+11, Lada+10,12,13, Vutisalchavakul+13,14

J. M. Diederik Kruijssen – Heidelberg University

see talk by Heiderman

◆ This offset emerges naturally due to region selection vs galactic averaging

Clouds & HII regions in a galaxy: Evolution & spatial distribution

Expected offset/spread:

Q

Lada+13: there is no global Schmidt law between GMCs

★ KL14: (1) makes sense because of unknown time-evolutionary state
 (2) there is a wealth of information on SF & FB hidden in the spread

J. M. Diederik Kruijssen – Heidelberg University

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS **439**, 3239–3252 (2014) Advance Access publication 2014 February 24

doi:10.1093/mnras/stu098

An uncertainty principle for star formation – I. Why galactic star formation relations break down below a certain spatial scale

J. M. Diederik Kruijssen^{1★} and Steven N. Longmore²

The way in which galactic star formation relations depend on the spatial scale is a direct probe of the physics of star formation on the cloud scale

J. M. Diederik Kruijssen - Heidelberg University

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS 439, 3239–3252 (2014) Advance Access publication 2014 February 24

doi:10.1093/mnras/stu098

An uncertainty principle for star formation – I. Why galactic star formation relations break down below a certain spatial scale

J. M. Diederik Kruijssen^{1★} and Steven N. Longmore²

The way in which galactic star formation relations depend on the spatial scale is a direct probe of the physics of star formation on the cloud scale

*and cluster!

A multi-scale theory of cloud evolution and star formation in galaxies: Small-scale variations of gas-to-SFR ratio reflect underlying timeline

Kruijssen & Longmore 14

J. M. Diederik Kruijssen - Heidelberg University

Clouds & HII regions in a galaxy: Evolution & spatial distribution

Star formation

A multi-scale theory of cloud evolution and star formation in galaxies: Small-scale variations of gas-to-SFR ratio reflect underlying timeline

Kruijssen & Longmore 14

Clouds & HII regions in a galaxy: Evolution & spatial distribution

Time

Gas-to-SFR ratio as a function of spatial scale

Globular clusters

Cluster formation

Survival

A multi-scale theory of cloud evolution and star formation in galaxies: Small-scale variations of gas-to-SFR ratio reflect underlying timeline

Kruijssen & Longmore 14

Clouds & HII regions in a galaxy: Evolution & spatial distribution

Gas-to-SFR ratio as a function of spatial scale

J. M. Diederik Kruijssen – Heidelberg University

Application to NGC 300

see talks by Hygate, Haydon

◆ Using far-UV and CO(1-0)

Probes broad range of quantities; relevant for cluster formation are:

```
t_{\rm gas} =
```

$$t_{\text{over}} =$$

$$\lambda =$$

Star formation

Q

Other galaxies yield similar results (but with interesting differences)

What do these "units" mean in the "hierarchical" & "scale-free" ISM? see talks by Klessen, Grasha

J. M. Diederik Kruijssen – Heidelberg University

What do these "units" mean in the "hierarchical" & "scale-free" ISM? see talks by Klessen, Grasha

O CONTRACTOR OF THE PARTY OF TH

What do these "units" mean in the "hierarchical" & "scale-free" ISM? see talks by Klessen, Grasha

J. M. Diederik Kruijssen – Heidelberg University

J. M. Diederik Kruijssen – Heidelberg University

What do these "units" mean in the "hierarchical" & "scale-free" ISM? see talks by Klessen, Grasha

O Linguistra

What do these "units" mean in the "hierarchical" & "scale-free" ISM? see talks by Klessen, Grasha

J. M. Diederik Kruijssen – Heidelberg University

What do these "units" mean in the "hierarchical" & "scale-free" ISM? see talks by Klessen, Grasha

J. M. Diederik Kruijssen - Heidelberg University

Multi-scale star formation: conclusions

Kruijssen & Longmore 2014, MNRAS 439, 3239 Haydon+ in prep. Hygate+ in prep. Schruba+ in prep.

- → Multi-scale model explains difference between cloud & galaxy SF relations
- ♦ New method to measure fundamental quantities characterising SF & FB
- → Molecular clouds live for a few dynamical times
- ◆ Star-forming regions are gas-poor within a few Myr after massive stars form
- → Maximum coherence scale (~ Toomre length) sets "unit" of galactic SF
- ◆ Cloud-scale star formation efficiency a few % → how to form bound clusters?

Cluster formation

Star formation

Survival

J. M. Diederik Kruijssen – Heidelberg University

Cluster Formation

Star formation

Cluster formation

Cluster formation and survival across cosmic time

J. M. Diederik Kruijssen – Heidelberg University

Star cluster formation: classical picture

- ◆ Classical picture: bound cluster formation affected by gas expulsion Hills 80, Lada+84, Geyer & Burkert 01, Lada & Lada 03, Boily & Kroupa 03, Goodwin & Bastian 06, Baumgardt & Kroupa 07, Parmentier+08, ...
- ◆ All stars form in clusters
- → Gas & stars in virial equilibrium

- → Feedback expels remaining gas
- → Because SFE is low: cluster expands, possibly becoming unbound
- ♦ Only ~10% of all star formation ends up in bound clusters

J. M. Diederik Kruijssen – Heidelberg University

Star formation

Cluster formation

No observational evidence for gas expulsion as key mechanism in YMCs see talk by Longmore

- ♦ NGC 3603 is ~virialised and not expanding Rochau+10
- ♦ Westerlund I is ~virialised and not expanding Cottaar+12
- → R136 is ~virialised and not expanding Hénault-Brunet+12

Star formation

Cluster formation and survival across cosmic time

J. M. Diederik Kruijssen – Heidelberg University

Even without feedback, dense clusters are gas-poor and virialised

- ◆ Stars form most efficiently at the gas density peaks due to short free-fall time recall discussion between Longmore & Calzetti before lunch
- Bound clusters form through gas exhaustion: free-fall time < feedback timescale observational confirmation: Ginsburg+16

Result applies in "hierarchical" or "scale-free" part of the ISM

◆ Each locally-self-gravitating part of the hierarchy could become gas-poor given a sufficient number of free-fall times

What does this mean in the context of galactic-scale star formation?

◆ Gas density PDF is lognormal, width increases with gas pressure

Vazquez-Semadini 94, Padoan & Nordlund++, Krumholz & McKee++, Federrath & Klessen++,

Hennebelle & Chabrier++, Kainulainen++, Schneider++, etc...

J. M. Diederik Kruijssen – Heidelberg University

What does this mean in the context of galactic-scale star formation?

Low density Long free-fall time

High density Short free-fall time

Cluster formation

Star formation

Survival

What does this mean in the context of galactic-scale star formation?

Long free-fall time Low SFE Short free-fall time High SFE

What does this mean in the context of galactic-scale star formation?

Low SFE Low bound fraction

High SFE High bound fraction

Q

No miraculous infant mortality, but deterministic long-term survival

J. M. Diederik Kruijssen - Heidelberg University

No miraculous infant mortality, but deterministic long-term survival

J. M. Diederik Kruijssen – Heidelberg University

O

No miraculous infant mortality, but deterministic long-term survival

0

No miraculous infant mortality, but deterministic long-term survival

Fraction of star formation occurring in bound stellar clusters

integral of clusters (grey-shaded area) "Cluster formation efficiency": $\Gamma =$ integral of stars (dashed line)

Q

Prediction: cluster formation efficiency increases with gas density

Prediction: cluster formation efficiency increases with gas density

Prediction: cluster formation efficiency increases with gas density

Observations: cluster formation efficiency increases with ~gas density

see talk by Adamo

Log SFR surface density [M_☉ yr⁻¹ kpc⁻²] (~ gas pressure)

Observations: cluster formation efficiency increases with ~gas density

Log SFR surface density [M_☉ yr⁻¹ kpc⁻²] (~ gas pressure)

What does the mass spectrum of the resulting clusters look like?

→ Empirically: mass distribution follows -2 power law with high-mass truncation

What does the mass spectrum of the resulting clusters look like?

see talk by Adamo

J. M. Diederik Kruijssen - Heidelberg University

→ Empirically: truncation mass scales with Toomre mass

Toomre 64; in this context Kruijssen 14c also see Hughes+13

Q

What does the mass spectrum of the resulting clusters look like?

- ◆ Fragmentation in hierarchical part of the ISM gives -2 power law Elmegreen & Falgarone 96
- ♦ Maximum mass scale set by largest scale that can collapse Toomre 64; in this context Kruijssen 14c

$$M_{\mathrm{T,cl}} = \epsilon \Gamma M_{\mathrm{T}}$$

Cluster formation: conclusions

Kruijssen+12a, MNRAS 419, 841 Kruijssen 12d, MNRAS, 426, 3008 Kruijssen 14c, CQG, 31, 244006 Adamo+15, MNRAS, 452, 246

- ◆ Star clusters form at the high-density end of the ISM density spectrum
- → The information for cluster formation is encoded in the gas properties
- Beyond "infant mortality":
 - gas expulsion affects associations, but does not affect bound clusters
 - clusters are no fundamental unit of star formation, but a possible outcome
- ◆ Cluster masses follow -2 power law with maximum set by Toomre mass
- → Cluster formation efficiency and maximum mass increase with gas pressure

J. M. Diederik Kruijssen – Heidelberg University

Cluster Survival

Star formation

Cluster formation

Cluster formation and survival across cosmic time

J. M. Diederik Kruijssen – Heidelberg University

Classical disruption mechanism: evaporation by two-body relaxation

Gieles & Baumgardt 08

Survival

Star formation

J. M. Diederik Kruijssen – Heidelberg University

Dominant cluster disruption mechanism is tidal shocking by dense gas

J. M. Diederik Kruijssen – Heidelberg University

Self-consistent formation/disruption of the cluster population in galaxies

Cluster disruption peaks in high-pressure (high-density) environments

J. M. Diederik Kruijssen – Heidelberg University

Cluster survival: conclusions

Kruijssen+11, MNRAS, 414, 1339 Kruijssen+12c, MNRAS, 421, 1927 Miholics+16, MNRAS to be subm.

- → Tidal shocks from molecular gas represent dominant disruption mechanism
- Cluster disruption faster in higher-pressure environments
- → Two-body relaxation-driven evaporation is a second-order effect
- → Self-consistent simulations of formation & evolution of star cluster population in galaxies are consistent with the properties of observed cluster populations

Star formation

Globular clusters

J. M. Diederik Kruijssen – Heidelberg University

Globular cluster formation in the context of galaxy formation & evolution

ightharpoonup Median GC formation redshift is $z \sim 3$

Globular cluster formation in the context of galaxy formation & evolution

J. M. Diederik Kruijssen - Heidelberg University

→ Median GC formation redshift only just precedes the peak cosmic SFR

Globular cluster formation in the context of galaxy formation & evolution

J. M. Diederik Kruijssen - Heidelberg University

→ High-redshift galaxies have extreme gas pressures relative to local galaxies

see talk by Longmore

Local Universe: high-pressure conditions → massive cluster formation

→ Properties of these young massive clusters similar to old globular clusters

M80 $M \sim 10^{5.6} \,\mathrm{M}_{\odot}$ $R \sim 1.8 \,\mathrm{pc}$

NGC1569-A $M \sim 10^6 \,\mathrm{M}_{\odot}$ $R \sim 1.6 \,\mathrm{pc}$

Local Universe: high-pressure conditions → massive cluster formation see talk by Longmore

- → Properties of these young massive clusters similar to old globular clusters
- ♦ Occam's Razor → first questions to ask are:

Could the products of regular cluster formation at high redshift have survived until the present day?

Are these relics consistent with the properties of local GC populations?

M80 $M \sim 10^{5.6} \,\mathrm{M}_{\odot}$ $R \sim 1.8 \,\mathrm{pc}$

NGC1569-A *M* ~ 10⁶ M_☉ *R* ~ 1.6 pc

Star formation

Cluster formation and survival across cosmic time J. M. Diederik Kruijssen - Heidelberg University

Two-phase, 'shaken, then stirred' model for GC formation

Model reproduces the Galactic GC mass function

- → Tidal shocks dominate and evaporation is a sub-dominant process
- ◆ Relations between # of GCs and galaxy props in place at z = 1-2
- universal peak mass except for lowest metallicities, as is observed (Jordan+07)
- near-universality of the GCMF is caused by the the rapid-disruption phase

J. M. Diederik Kruijssen - Heidelberg University

Resulting cluster population matches z = 0 GC population

Kruijssen 15b

- ◆ GC mass function
- ◆ Specific frequency (# of GCs per unit field star mass)
- Colour/metallicity bimodality
- ◆ GC system mass halo mass relation
- ◆ Consistent with what we know about local-Universe star/cluster formation
- → GCs consistent with natural outcome of star formation at high redshift If GCs formed differently after all: where did the normal clusters go?

J. M. Diederik Kruijssen – Heidelberg University

Star formation

Environmental dependence implies that cosmic variance is important

◆ Need more than analytical model

◆ Account for space/time variation of cluster formation, migration & disruption

The co-formation of galaxies & GC populations: the *E-MOSAICS* project

◆ Couple Kruijssen+11,12 "MOSAICS" cluster formation/evolution models to

the EAGLE simulations
Pfeffer+ in prep.
Kruijssen+ in prep.

◆ First time that the formation and evolution of the entire cluster population is modeled self-consistently across cosmic history

J. M. Diederik Kruijssen – Heidelberg University

Globular clusters: conclusions

Kruijssen 14c, CQG, 31, 244006 Kruijssen 15b, MNRAS, 454, 1658

- → Simple, end-to-end model reproduces the main GC population observables
- → GCs natural outcome of normal star/cluster formation in high-redshift discs
- ◆ GCs formed and evolved according to the same physics as YMCs
- ★ Early, rapid disruption phase by tidal shocks is critical for reproducing the GC population
- ♦ We are now beginning to understand the co-formation of GCs and galaxies

Cluster formation

Star formation

Survival

J. M. Diederik Kruijssen – Heidelberg University

Cluster formation across cosmic time

Cluster formation

Star formation

Survival

J. M. Diederik Kruijssen – Heidelberg University

Cluster formation across cosmic time

◆ The physics behind the gas-SF relation across all scales are complex, but a bottom-up understanding emerges from observations and modelling

Star formation

J. M. Diederik Kruijssen - Heidelberg University

Cluster formation across cosmic time

- ◆ The physics behind the gas-SF relation across all scales are complex, but a bottom-up understanding emerges from observations and modelling
- ◆ Stellar clusters are a key byproduct of the SF process; out to high redshift, their formation and survival are governed by universal, ISM-driven physics

Star formation

