

ARJAN BIK (SU)

Veronica Menacho (SU) Angela Adamo (SU) Göran Östlin (SU) Matthew Hayes (SU) Jens Melinder (SU) Phillippe Amram (Marseille)

THE FEEDBACK OF SUPER Star clusters on the ISM

WHY IS FEEDBACK IMPORTANT?

- Responsible for different ISM phases
- Changes morphology and star formation history of the galaxy
- Affects our understanding of Galaxy evolution
- Metal enrichment of the IGM
- Possible source of re-ionization of the universe (escape of LyC photons)

HOW TO ADDRESS THESE PROBLEMS?

- Find local analogues of high-redshift star forming galaxies
- The clusters responsible for the feedback can be analysed in detail.
- The galactic scale effects of feedback can be resolved.

HOW TO ADDRE

- Find local and forming galaz
- The clusters r can be analys
- The galactic s be resolved.

OPTICAL EMISSION LINES AS ISM TRACERS

- (Forbidden) line ratios trace properties ISM.
 - extinction
 - ionisation
 - temperature
 - density
 - abundances
 - comparison with photoionisation models

- Integral Field Spectroscopy with MUSE at the VLT
- 1'x1' IFU with 0.2" pixel scale, 90000 spectra.

OPTICAL EMISSION LINES AS ISM TRACERS

- (Forbidden) line ratios trace properties ISM.
- Integral Field Spectroscopy with MUSE at the VLT

extinction

ISM PROPERTIES OF ESO 338-IG04

- MUSE observations of local LBG analogue ESO338-IG04 (Bik et al, 2015a,b, Bik et al, in prep)
- Galaxy contains many super star clusters (Ostlin et al, 2003) and is surrounded by a large ionised halo.
- ▶ Mv = -19 mag
- HI mass: 1.4x10⁹ Msun (Cannon et al, 2004)
- Stellar mass 4x10⁹ Msun (Ostlin et al, 2001, Bergvall & Ostlin, 2002)
- 12+log(O/H) = 7.9 (Guseva et al, 2012)
- Distance: 37.5 Mpc

Blue UV (F140LP) Green: Visual (F550M) Red: Ha (FR656N)

credit: Jens Melinder

CLUSTER POPULATION

- Many young, massive super star clusters (Östlin et al, 2003)
- Cluster formation history peaks at very young ages.
- Most massive cluster (cluster 23)
 - dynamical mass of 1.3x10⁷ Msun (Östlin et al, 2007)
 - Blown a huge bubble around the cluster.

CLUSTER POPULATION

- Many young, massive super star clusters (Östlin et al, 2003)
- Cluster formation history peaks at very young ages.
- Most massive cluster (cluster 23)
 - dynamical mass of 1.3x10⁷ Msun (Östlin et al, 2007)
 - Blown a huge bubble around the cluster.

IONISATION

- Ionisation traced by [SII]/[SIII]
- Center of galaxy highly ionised
- Most massive young clusters located in highest ionised region.
- Extreme conditions in vicinity of SSC.

HEII EMISSION: WR STARS AND DIFFUSE GAS

- Broad Hell λλ4686 A emission: WR stars with strong winds.
- Narrow Hell emission, diffuse gas.
- Cluster 23: narrow emission peaks away from the cluster.

GAS PROPERTIES

- Density and gas pressure
- temperature ~constant: 12000K
- Density very low in outer halo and ~200 cm^3 towards some of the densest HII regions.
- Highest pressure in the central part of the galaxy.

OI/Halpha ratio good
 traces of shocks (Veilleux & Osterbrock, 1987)

- OI/Halpha ratio good
 traces of shocks (Veilleux & Osterbrock, 1987)
- Points to the right of the SF line, located outside the centre.
- Expanding gas of overpressure HII region shocking in lower-ionised gas?

OI/Halpha ratio good
 traces of shocks (Veilleux & Osterbrock, 1987)

ES0338

- Points to the right of the SF line, located outside the centre.
- Expanding gas of overpressure HII region shocking in lower-ionised gas?

GALACTIC WIND

- Ha velocity map
- Two redshifted outflows
- Possible driving source: cluster 23
- Correlated with
 enhancements in
 Lya (Östlin et al, 2009)

GALACTIC WIND

- Ha velocity map
- Two redshifted outflows
- Possible driving
 source: cluster 23
- Correlated with
 enhancements in
 Lya (Östlin et al, 2009)

Bik et al, 2015

CAN LYC ESCAPE THE GALAXY?

- Ionization cones (Zastrow et al, 2011,2013, Bik et al, 2015)
- gas highly ionised and optically thin for LyC photons.
- Halo partly density bounded.
- Indirect LyC escape fraction estimated to be 16 % based on absorption line spectroscopy (Leitet et al, 2013)

SUMMARY

 Local analogues of high-redshift star forming galaxies can be studied to understand the detailed impact of feedback on the ISM of galaxies .

• ESO 338:

- ISM strongly modified and by super star clusters
- center highly ionised and possibly expanding in surrounding gas, causing shocks.
- Ionisation cones could facilitate LyC escape
- Galactic winds could facilitate Lya escape
- > Analysis of a larger sample of high redshift analogues is in preparation.