

Challenges and first results

Molecular gas and dust in LARS

How Galaxies form Stars, 26 Aug 2016

Johannes Puschnig

Outline

"Hidden Track"

The Lyman Continuum Escape and ISM properties in Tololo 1247-232 – New Insights from HST and VLA

J. Puschnig^{1*}, M. Hayes¹, G. Östlin¹, T. E. Rivera-Thorsen¹, J. Melinder¹, J. M. Cannon², V. Menacho¹, E. Zackrisson³, N. Bergvall³ and E. Leitet³ ¹Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, 106 91 Stockholm, Sweden ²Department of Physics & Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA ³Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden</sup>

Submitted to MNRAS

Background

- Many efforts have been undertaken to study the evolution of (global) properties with redshift.
- Deep Field imaging/spectroscopy (COSMOS, GOODS, H(U)DF,...)
- Scaling relations such as the MS, MZR, KS could be established for galaxy populations at different redshifts.

cosmic peak of star formation

Madau & Dickinson (2014)

Evolution of the MS: SFE or molecular gas fraction?

Genzel+ (2015)

What about starbursts (in dwarf galaxies)?

- scatter above the MS
- outliers e.g. in the MZR (Janice Lee's talk)
- don't contribute much to cosmic star formation rate density (Françoise Combes' talk)

What about starbursts (in dwarf galaxies)?

scatter above the MS

...because of evolution

- being an outlier at low-z could mean being totally "normal" at higher redshift
- with the huge advantage of having detailed insight (resolution) into ISM at low-z
- LARS not only allows to study mechanisms behind Lα escape (Jens Meldinder's talk), but also allows to get insight into the mechanism & ISM properties driving star formation itself; which in turn could help to (better) understand star formation processes going on at higher redshift.

...because of evolution

being an outlier at low-z could mean being totally "normal" at higher redshift

... because of evolution

being an outlier at low-z could mean being totally "normal" at higher redshift

...because of evolution

Outline

- Background and motivation to study cold gas in local Lyman Alpha Emitters (LAEs)?
- Methods/Observations
- First/Preliminary Results
- Outlook
- "Hidden Track"

Johannes Puschnig (Stockholm University) → CO observing strategy

- IRAM 30m: CO (1-0) and (2-1)
- Apex 12m: CO (3-2) if observable from Southern hemisphere and detected with IRAM 12m
- low metallicity makes this challenging due to CO-dark molecular gas (see Karl Schuster's talk)
- Use Z-dependent Conversion Factor (Magdis+ 2011, Schruba+ 2012, Accurso+ in prep) to derive molecular gas mass

Summary of CO Detections

Table 1: Summary of the detected emission lines, Gaussian fit results and measured fluxes

id	Line	B_{eff}	HPBW	V _{0.Gauss}	DV _{Gauss}	SNR	I _{CO}	S _{CO}
			[arcsec]	[km/s]	[km/s]		[K km/s]	[Jy km/s]
3	CO (1-0)	0.79	22.1	-98.4 (10.3) 66.9 (5.6)	238.8 (19.73) 127 (16.01)	27.7	6.87 (0.24)	34.35 (1.23)
3	CO (2-1)	0.58	11.0	-127.5 (10) 53.3 (7.7)	179.3 (16.42) 153.7 (12.05)	53.9	16.57 (0.3)	82.83 (1.53)
3	HCN (1-0)	0.84	28.7	-18.3 (54.1)	544.8 (126.61)	5.6	0.15 (0.02)	0.79 (0.13)
3	HCO+ (1-0)	0.84	28.6	-34.6 (63.3)	454.8 (121.76)	4.3	0.12 (0.02)	0.63 (0.14)
8	CO (1-0)	0.80	22.2	-75.8 (2.8) 108.4 (3.8)	127 (5.96) 144.7 (8.11)	50.7	6.84 (0.134)	34.17 (0.67)
8	CO (2-1)	0.59	11.1	-73 (2.3) 112.1 (4.6)	130.7 (5.72) 128.3 (9.55)	44.6	11.69 (0.26)	58.41 (1.31)
8	HCN (1-0)	0.84	28.9	-125.3 (25.8) 161.2 (38.7)	149.7 (54.55) 159.6 (61.75)	3.9	0.009 (0.002)	0.045 (0.011)
8	HCO ⁺ (1-0)	0.84	28.7	-24.3 (38.8)	169.5 (64.53)	1.3	0.002 (0.002)	0.014 (0.011)
9	CO (1-0)	0.80	22.4	90 (4.9)	140.3 (14.73)	10.7	0.61 (0.05)	3.05 (0.28)
9	CO (2-1)	0.59	11.2	151.9 (25.8)	258.5 (84.73)	2.1	0.42 (0.19)	2.12 (0.97)
11	CO (1-0)	0.80	23.2	-73.7 (6.9) 131.1 (8.3)	154 (3.36) 174.5 (15.16)	18.2	1.53 (0.08)	7.67 (0.42)
11	CO (2-1)	0.60	11.6	-105.5 (8.3) 80.6 (14.4)	82.4 (19.42) 203.5 (30.18)	11.0	1.94 (0.17)	9.71 (0.88)
13	CO (1-0)	0.82	24.6	-14.2 (26.8)	199.3 (56.04)	3.3	0.03 (0.01)	0.19 (0.05)
13	CO (2-1)	0.63	12.3	39 (31.7)	253.1 (75.79)	4.5	0.19 (0.04)	0.96 (0.21)

Summary of CO Detections

Puschnig+ (in prep)

Summary of CO Detections

CO Non-Detections

Puschnig+ (in prep)

FIR/dust observations

- Constrain FIR SED by LSQ fitting of Draine & Li (2007) model (D07) parameters to photometric bands of WISE and Herschel/PACS.
- Derive M_{dust}, <U_{min}>, Ω_{*}
- Adopt Z-dependent dust-to-gas ratio from Leroy+ (2011) to constrain molecular gas mass.

FIR SEDs of LARS galaxies

Outline

- Background and motivation to study cold gas in local Lyman Alpha Emitters (LAEs)?
- Methods/Observations
- First/Preliminary Results
- Outlook
- "Hidden Track"

Preliminary Results (CO)

Preliminary Results (CO)

Preliminary Results (CO+Dust)

Preliminary Results (Dust)

Preliminary Results (Dust)

Preliminary Results (Dust)

- "the ISRF intensity G_owas 5 times higher with consequently higher T_{dust} at z~3 than at z~o" (Magdis+ 2012)
- understood based on the redshift evolution of the M *-Z and SFR-M * relations
- \rightarrow In LARS, the mean UV interstellar radiation field G_o ~ 10
- Dust SEDs are LMC-like

Outline

- Background and motivation to study cold gas in local Lyman Alpha Emitters (LAEs)?
- Methods/ObservationsFirst/Preliminary Results
- Outlook
- "Hidden Track"

Outlook

- Dynamical mass constraints (CO conversion factor)
- Use new prescriptions for sSFR/Z-dependence of conversion factor (Accurso in prep; Amélie Saintonge's talk)
- Use the CO lineratios yet available (CO J=1-0, J=2-1 and J=3-2) in combination with [CII]158µm, [OI] 63µm obtained with Herschel/PACS and SOFIA together with PDR models to derive density and temperature of the molecular gas.
- Single dish observations rely on an aperture correction that introduces additional uncertainty

 interferometry needed

Outline

- Background and motivation to study cold gas in local Lyman Alpha Emitters (LAEs)?
- Methods/Observations
- First/Preliminary Results
- Outlook
 - "Hidden Track"

The Lyman Continuum Escape and ISM properties in Tololo 1247-232 – New Insights from HST and VLA

J. Puschnig^{1*}, M. Hayes¹, G. Östlin¹, T. E. Rivera-Thorsen¹, J. Melinder¹, J. M. Cannon², V. Menacho¹, E. Zackrisson³, N. Bergvall³ and E. Leitet³ ¹Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, 106 91 Stockholm, Sweden ²Department of Physics & Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA ³Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden

> z=0.048 D_L=209 Mpc

Puschnig+ (submitted, MNRAS)

The Lyman Continuum Escape and ISM properties in Tololo 1247-232 – New Insights from HST and VLA

J. Puschnig^{1*}, M. Hayes¹, G. Östlin¹, T. E. Rivera-Thorsen¹, J. Melinder¹, J. M. Cannon², V. Menacho¹, E. Zackrisson³, N. Bergvall³ and E. Leitet³ ¹Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, 106 91 Stockholm, Sweden ²Department of Physics & Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA ³Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden

HST/COS setup:

- 2.5 arcsec fiber
- G130M grism
- CENWAVE: 1055AA and 1327AA
- approx. 3.3h in total

Throughput below~1100AA extremely low

→ CALCOS pipeline modification needed:

- Adjusting PHA (filtering of background photons)
- Orbital Night data only
- Improved BG subtraction

Direct Detection of LyC in Tol1247

Direct Detection of LyC in Tol1247

Constraints from UV absorption lines

* Si II at 1190, 1193, 1260, 1304 Å
→ mean profile blueshifted/outflow
→ extremely wide line

- * Apparent opt. depth method:
- (Jones+ 2013, Rivera-Thorsen+ 2015)
- \rightarrow gas is optically thick
- \rightarrow residual at all v \rightarrow CLUMPY
- \rightarrow covering fraction very low

VLA 21cm observations of Tol1247

Summary of LyC escape in Tol1247

- Direct detection of LyC in the range 896-909 AA at a 2-sigma level after substantial modification of CALCOS pipeline
- LyC leakage is supported by UV absorption lines showing that the gas is optically thick, but residual is seen at all velocities

 CLUMPY, very low covering fraction
- Using LaXs, a LyC escape fraction of 6.6% was computed.
- almost extinction-free sightlines in the innermost ~500pc were found
- Tol 1247-232 was not detected at 21cm → very low gas fraction M_{gas}/M_{*} of <0.2

Thank you for listening