A new insight of the outer filaments of Centaurus A (Salomé Q. et al. 2016; Salomé Q. et al., accepted)

Salomé Quentin¹, Salomé Philippe¹, Combes Françoise^{1,2}, Hamer Stephen³

¹LERMA, Observatoire de Paris ²Collège de France ³CRAL, Observatoire de Lyon

25 August 2016

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Introduction: AGN feedback

- Radiative mode → large amount of radiation
- Jet mode → kinetic energy

AGN feedback: interaction between energy generated by accretion and gas.

Star formation efficiency

Introduction: jet-induced star formation

Some examples suggest that AGN feedback may also trigger star formation.

3C 293 by Lanz et al. (2015): X-ray emission is aligned with the radio jet at $\sim 80 \text{ kpc}$ from the centre

Henize 2-10 by Reines et al. (2011): near-IR clumps within $\sim 50 \ \mathrm{pc}$ along the radio jet in a dwarf starburst galaxy

Observations

Star formation efficiency

Dynamics and excitation

Introduction: 3C 285/Minkowski's Object

Two star-forming regions at tens of kpc of radio galaxies along the radio jet \rightarrow Is star formation more efficient in the shocked region along the jets?

Salomé et al. (2015), A&A, 574, A34

- CO(1-0) and CO(2-1) with the IRAM 30m telescope
- $M_{H_2} < (0.01 6) \times 10^8 M_{\odot}$
- $SFR = 0.43 0.56 M_{\odot}.yr^{-1}$

Centaurus A, an example of jet-gas interaction

Oosterloo & Morganti (2005)

- The jet encounters a HI shell (Schiminovich et al. 1994)
- The nearest example of jet-gas interaction
- \Rightarrow Enables to look at small scales

Centaurus A, an example of jet-gas interaction

- The jet encounters a HI shell (Schiminovich et al. 1994)
- The nearest example of jet-gas interaction
- \Rightarrow Enables to look at small scales
- FUV emission (Neff et al. 2015), young stars (Rejkuba et al. 2001)
- ⇒ Recent (triggered?) star formation

Centaurus A, an example of jet-gas interaction

- The jet encounters a HI shell (Schiminovich et al. 1994)
- The nearest example of jet-gas interaction
- ⇒ Enables to look at small scales
- FUV emission (Neff et al. 2015), young stars (Rejkuba et al. 2001)
- ⇒ Recent (triggered?) star formation
- Dust emission (Auld et al. 2012)
- ⇒ Molecular gas?

Molecular gas in the shell

Charmandaris et al. (2000)

CO emission in the shells aligned with the jet, but not in the other (S3)

A multi-wavelength study

CO(2-1) with APEX and ALMA (archive), HCN/HCO⁺(1-0) with ATCA, MUSE data

We extended the region and covered three regions:

- One within the HI cloud
- One outside the HI and within the dust emission
- One outside the HI with FUV emission only

Salomé et al. (2016), A&A, 586, A45 Salomé et al. (2016), arXiv:1605.05986 Observations

Star formation efficiency

CO properties

- The molecular gas follows the dust emission
- It is detected outside the HI cloud
- Surprisingly stronger on the east

•
$$M_{H_2}^{tot} = (8.2 \pm 0.5) \times 10^7 M_{\odot}$$

□ ト < 団 ト < 亘 ト < 亘 ト < 亘 > 亘 の Q (~ 8/15) Observations

Star formation efficiency

Dynamics and excitation

CO properties

- The molecular gas follows the dust emission
- It is detected outside the HI cloud
- Surprisingly stronger on the east

•
$$M_{H_2}^{tot} = (8.2 \pm 0.5) \times 10^7 M_{\odot}$$

□ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 를 ∽Q (~ 8/15

Molecular-to-atomic mass ratio

We compared the APEX CO data with VLA HI data and derive $\rm H_2/HI$ mass ratios. Lower resolution for VLA ($40^{\prime\prime}\times78^{\prime\prime})\Rightarrow$ combination of several APEX pointings contained in a single VLA beam.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					~			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					L	West		
$ \begin{array}{ c c c c c c c } \hline East \\ \hline M_{HI} & M_{H_2} & M_{H_2}/M_{HI} \\ < 9.2 \times 10^5 & 3.2 \times 10^7 & > 35.1 \\ < 9.3 \times 10^5 & 9.0 \times 10^6 & > 9.73 \\ \hline 5.5 \times 10^5 & < 1.0 \times 10^7 & < 18.2 \\ \hline 2.4 \times 10^6 & 5.1 \times 10^7 & \sim 21.3 \end{array} $					M _{HI}	M _{H2}	M_{H_2}/M	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fast			2.8×10^{6}	$< 2.8 \times 10^{6}$	< 1.00	
$\frac{14}{9.2 \times 10^5} \frac{14}{3.2 \times 10^7} \frac{14}{3.2 \times 10^7} \frac{14}{3.2 \times 10^7} \frac{11}{3.2 $	M···	M.,	M., /M.,		4.6×10^{6}	4.6×10^{6}	1.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101HI	2 2 1 107	101 _{H2} /101 _{H1}		/ 1.7 × 10 ⁶	9.4×10^{6}	5.42	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$< 9.2 \times 10^{-105}$	$3.2 \times 10^{\circ}$	> 35.1		2.6×10^{6}	1.8×10^{6}	0.69	
$\frac{5.5 \times 10^{6}}{2.4 \times 10^{6}} \frac{< 1.0 \times 10^{7}}{5.1 \times 10^{7}} \frac{< 18.2}{\sim 21.3}}{2.4 \times 10^{6}} \frac{5.5 \times 10^{6}}{1.1 \times 10^{6}} \frac{1.1 \times 10^{6}}{0.20}}{1.9 \times 10^{7}} \frac{0.20}{2.6 \times 10^{7}} \frac{1.1 \times 10^{6}}{-1.3 \times 10^{6}}}{1.1 \times 10^{6}} \frac{0.20}{-1.3 \times 10^{7}} \frac{1.1 \times 10^{6}}{-1.3 \times 10^{7}} \frac{0.20}{-1.3 \times 10^{7}}}{1.3 \times 10^{7}} \frac{1.1 \times 10^{6}}{-1.3 \times 10^{7}} \frac{0.20}{-1.3 \times 10^{7}} \frac{1.1 \times 10^{6}}{-1.3 \times 10^{7}} \frac{1.1 \times 10^{6}}{-1.3 \times 10^{7}} \frac{0.20}{-1.3 \times 10^{7}} \frac{1.1 \times 10^{6}}{-1.3 \times 10^{7}} \frac{1.1 \times 10^{7}}{-1.3 \times 10^{7$	$< 9.3 \times 10^{-5}$	$9.0 \times 10^{\circ}$	> 9.73		8.2×10^{5}	4.5×10^{6}	5.49	
$\frac{2.4 \times 10^6}{1.9 \times 10^7} \times \frac{5.1 \times 10^7}{2.6 \times 10^7} \times \frac{21.3}{2.137}$	5.5×10^{-5}	$< 1.0 \times 10^{7}$	< 18.2		5.5×10^{6}	1.1×10^{6}	0.20	
$\frac{35 \times 10^7}{1.9 \times 10^7} = 2.6 \times 10^7 = -1.37$	2.4×10^{6}	5.1×10^{7}	~ 21.3	 T	5.9×10^{5}	$< 1.8 \times 10^{6}$	< 3.04	
				<u> </u>	$\frac{3.9 \times 10^{7}}{1.9 \times 10^{7}}$	2.6×10^7	~ 1.37	
					1.5 × 10	2.0 / 10	1.57	

The full region contains $M_{\rm H_2}=7.7\times10^7~M_{\odot}$ and $M_{\rm HI}=2.1\times10^7~M_{\odot}$ (ratio of 3.66) \Rightarrow the filaments are mostly molecular.

 \Rightarrow HI-to-H₂ phase transition triggered by the radio jet?

ALMA resolved molecular gas

10/15

ALMA resolved molecular gas

Cycle 0 observations; 16 antennas unpublished archival data: project 2011.0.00454.S

3 clumps (d = $2'' \sim 30 \text{ pc}$) in CO(2-1)

- $\label{eq:scolar} \begin{array}{l} \bullet \hspace{0.1 cm} S_{CO} \Delta v \sim 3.0 \hspace{0.1 cm} Jy.km.s^{-1} \Rightarrow \\ M_{H_2} \sim 1.6 \times 10^5 \hspace{0.1 cm} M_{\odot} \end{array}$
- HCN not detected:
 $$\begin{split} &S_{HCN}\Delta v < 33.5 \ mJy.km.s^{-1} \\ &(f_{dense} \lesssim 12\%) \end{split}$$
- $\alpha_{\rm vir} = 5\sigma_{\rm c}^2 R_{\rm c}/({\rm GM_c}) \sim 15 25$ \Rightarrow no gravitational collapse, turbulent gas?

Clump	v ₀	Δv	M _{H2}
	(km.s ⁻¹)	$(km.s^{-1})$	$(10^4 \ \tilde{M}_{\odot})$
1	~ 230	~ 12.5	7.3 ± 3.1
2	~ 220	~ 8.0	4.8 ± 3.1
3	~ 210	~ 7.5	3.8 ± 2.7

10/15

Star formation tracers

- ~ 10% uncertainties on IR fluxes (bgd extraction)
- uncertainties on the SFR: $\sim 10 30\%$
- whole region (8.7 \times 5.8 kpc): $SFR_{tot} \sim 1.1 \times 10^{-3}~M_{\odot}.yr^{-1}$
- $\Rightarrow t_{dep}^{mol} \sim 75 \text{ Gyr (normal spiral galaxies:} \sim 2 \text{ Gyr)}$

12/15

Gas and SFR surface densities in the filaments

- Recent star formation within the filaments
- Higher H_2/H_1 ratio along the jet direction
- Star formation efficiency is very low
- ⇒ Consistent with star formation triggered by the jet (via H₂ formation) within a large molecular gas reservoir

Dynamics of the filaments

CO(2-1) emission is blueshifted and show velocity gradients with the top being bluer. PV diagrams show a change in velocity for both the atomic and molecular gas \rightarrow Due to the interaction of the radio-jet with the gas?

Dynamics of the filaments

CO(2-1) emission is blueshifted and show velocity gradients with the top being bluer. PV diagrams show a change in velocity for both the atomic and molecular gas \rightarrow Due to the interaction of the radio-jet with the gas?

Excitation of the filaments

Salomé et al. (2016)

Excitation of the filaments

Conclusions

CO distribution in the outer filaments:

- Large scale map along the optical, UV and dusty filaments with APEX
- Clumpy molecular gas in two separated structures, with CO(2-1) emission in between
- The eastern region is CO brighter than the western

Jet-gas interaction:

- Kinetic energy injection from large scale dynamics?
- Velocity shears → direct effect of the jet interaction on the gas distribution?
- Different excitation mechanisms: AGN/shocks dominated, with localised HII regions
- High molecular-to-atomic gas fraction → the jet compresses the gas and triggers the phase transition?

Star formation inefficiency:

- The filaments recently SF but, from a huge molecular gas reservoir
- $\bullet~$ SFE is very low in the northern filaments: total $t_{dep}^{mol} \sim 75~Gyr$
- \Rightarrow Some processes may prevent SF in the cold gas