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OUTLINE

• The standard density-functional-theory (DFT) framework

• An overview of correlated materials and DFT limitations in 

decscribing them

• Models of correlated systems

• Dynamical mean-field theory (DMFT) and Mott transition in the 

model context

• DFT+DMFT: an ab initio framework for correlated materials



DFT: an effective one-electron theory

The conventional (density functional theory) approach to electronic structure:

 EĤ
Many-body theory
(Many-electron Schrödinger eq. For
Interacting electrons)

Effective one-electron theory:
No interaction term in HKS

All many-body effects are taken 
into account implicitly in VKS

within LDA/GGA

Provides good description for itinerant electron states characterized by wide bands
Often fails for (partially) localized states in narrow bands



1).                 : kinetic energy dominates; electrons 

behave as weakly-renormalized quasiparticles

2).                   : on-site repulsion dominates, at each 

site electrons adopt a configuration minimizing 

potential energy, no conduction

3).                : electrons moves in a strongly 

correlated fashion. Strongly-correlated bad metals 

at the verge of Mott insulating behavior

Simple estimate of the key energy scales in solids (see A. Georges arXiv:0403123) :

Kinetic vs. potential energy competition and electronic correlations

is an orbital for L={l,m} centered at cite R

hopping matrix element, estimate for the kinetic 
energy, determining the bandwidth W

Screened Coulomb repulsion between 
orbitals on the same site

U in Ni metal

Screened U
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Strongly-correlated materials
Systems with U bandwidth are not described correctly within DFT-LDA/GGA 
Important classes of those materials:

• Transition metal compounds:
TM-oxides (NiO, CoO, Fe2O3, V2O3…)
TM perovskites (SrVO3, CaVO3, LaTiO3, YTiO3…)
cuprate superconductors (La2-xSrxCuO4, Nd2-xCexCuO4…)
manganites (LaMnO3). 

Parameters controlling correlation strength: U, W, dp, CF. 

• Localized f- electron compounds: 
lanthanide metals (Pr-Yb), oxides (Ln2O3…), pnictides (LnN, LnP, LnAs)
heavy actinides (Am-Cf) and their compounds

Relevant parameters: intra-atomic U, J, SO, crystal field CF much smaller
f-states localized and posses local moments, often order magnetically at low T.

• Heavy-fermion compounds, Kondo lattices: 
mainly Ce, Yb, and U compounds: CeAl3, CeCu2Si2, UPt3, CeRhIn5… 
At high T ~ localized f-el. compounds.  At low T the local f-moments screened by cond. 
electrons. C(T)=T with very large  (correspond. to m* ~1001000). Often 
superconducting at low T.

* More exotic systems: organic conductors, optical lattices



Transition-metal oxides and peroxides

O 2p 3d eg

t2g

Hyb.

LDA DOSSrVO3, CaVO3, LaTiO3, YTiO3

Basic electronic structure:

• O 2p and TM eg (d x2−y2 , d z2−r2) 

form bonding anti-bonding states

• TM t2g (xy,xz,yz) are pinned at EF

• t2g states are quite localized, 

U~3-5eV

Imada et al. Rev. Mod. Phys. 1998



Localized Rare-earth compounds 

• In majority of lanthanides 4fs are localized 
and do not contribute to bonding, W << U 
They form local moments (a Curie 
susceptibility) ordering at low T.

• In LDA 4f states itinerant, pinned at EF , 
contribute to bonding  too small 
volume, metallic state

Ce2O3

Optical gaps in 1. Ln2O3;  2. Ln2S3;  3. Ln2Se3 

Golubkov et al., Phys. Solid State 37, 1028 (1995).

Ce2O3  volume underestimated by 14% 



CeSF is a wide-gap semiconductor with a sharp absorption edge
however, DFT predicts it to be a metal...

DFT-LDA Kohn-Sham
Band structure

Ce: 4�� configuration,
paramagnetic

An example: CeSF – an f-electron pigment



Volume collapse in rare-earth and heavy actinides 

Under pressure bandwidth increases and U/W
In result, f electrons delocalize, V and crystal. 
structure usually changes

Rare-earth metals

Am and Cm metals under P 
(Rev. Mod. Phys. 81 235 (2009)

Due to complicated shapes of f-el. wave functions low-volume structures of RE and AC 
metals  are often quite complex



Several famous models have been proposed to capture strongly-correlated behavior while 
keeping only most relevant parameters describing the competition between the hopping 
and local Coulomb repulsion

Hubbard model (1b):

Extended Hubbard model: includes as well the hopping between the correlated (d) and 
ligand (p) band for a more realistic description of TM-oxides

Periodic Anderson model: discards direct hopping between correlated orbitals, relevant for 
localized RE, heavy-fermion compounds with very localized f-electrons:

Lattice models of correlated materials

The simplest model including only nearest neighbor hopping + on-site U

Even those simplified lattice models cannot be solved exactly apart from limiting cases 
(zero U or hopping, 1d cases)



describes a single impurity                                                 

embedded into a host of non-interacting  delocalized electrons:

localized impurity and itinerant states hybridize:  

Impurity models (the Anderson model, P. W. Anderson 1961) were originally proposed to 
describe formation  local magnetic moments of TM impurities in metallic hosts 

Anderson impurity model: 

Impurity models

For U>> |Vk| AIM may be reduced to the Kondo model:

describing interaction of itinerant electrons with localized spins

AIM and Kondo model were solved in 70s-80s by several techniques (renormalization group, 

Bethe anzatz, large N-expansion), other numerical and analytical methods are available now



Mean-field theories: example of the Ising model

Ising model:

The average on-site magnetization is

We introduce a mean field                                           that reproduces given          :

MF approximation= neglecting fluctuations of magnetization on neighboring sites:

which allows one to obtain a closed equation for the magnetization:

It becomes exact in the limit of coordination number z
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Dynamical mean-field theory(DMFT)

Recalculating lattice 
properties Dynamical mean-field theory: 

maps a correlated lattice problem 
into an effective impurity

problem

Self-consistent
environment

U)(0 G

Effective AIM

Dynamical mean-field theory (Metzner/Vollhard PRL 89 and Georges/Kotliar PRB 92) relates 
a correlated lattice problem (e.g. Hubbard model) to an auxiliary Anderson impurity model, 
which can then be solved 

some reviews:
Georges et al. Rev. Mod. Phys. 1996
Georges arXiv:0403123



The lattice (Hubbard) model is described by the Hamiltonian: 

and we may introduce local GF (in the imaginary time domain) 

for a representative site:                                                                     

and its Fourier transform 

which is the local quantity ( «mi ») coupled to an effective bath (the rest of the lattice)

The representative site is described by effective AIM:

where 

The dynamical mean-field theory: local GF and the bath

U U U U

U U U U

U U U U

t
t

t

t

where           /          are the bath degrees of freedom 



The electron hopping on/off the impurity is thus described by the bath Green’s function:

and the interaction term ���↑��↓ it defines an effective Anderson impurity problem for a 
single correlated atom. Solution of this quantum impurity problem gives one the local 
Green’s function.

One needs then to obtain the effective field in  terms of a local quantity.  

defining the local self-energy :

and lattice GF and self-energy:

we introduce the key mean-field approximation:

i.e.  the self-energy is  purely local.  One obtains the DMFT self-consistency condition:

DMFT: the hybridization and bath Green’s functions

)(),( nimpn iik  



Iterative solution of DMFT equations
In practice one searches for the true Weiss field                          using an iterative procedure 

updated

Initial guess 

for 



DMFT capturing the Mott transition: d 1-band case

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004).

1b Model evolution vs. U/W 

on the « tree-like » Bethe lattice 

with z :     � = ��/ �

has a particular simple DMFT self-consistency 
condition (see Georges et al. Rev. Mod. Phys. 96) 

 Non-interacting case: metal with semi-circular DOS

 Insulating limit: lower and upper Hubbard bands 
each containing 1electron/site and separated by the 
gap ~U

 Conecting those two limits:

with increasing U/W the system passes through a

correlated metal regime (3-peak structure)

followed by the Mott transition.

z=5



An approach for real materials: DFT+DMFT framework

Crucial ingredients:

→ choice of the localized basis 

representing correlated states

→ choice of the interaction vertex 

→ DMFT impurity solvers

→ self-consistency in the charge density

(Anisimov et al. 1997, Lichtenstein et al. 1998, 

Review: Kotliar et al. Rev. Mod. Phys. 2006 )
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from DFT-LDA

Combining ab initio band DFT methods with a DMFT treatment of correlated shells



Wannier functions are constructed from Bloch eigenstates of the KS problem

or in the k-space:

Optimizing �(�) and increasing the range of bands � one may increase the localization of WF

Advantage: flexible, can be interfaced with any band structure method

Disadvantage: requires  Wannier orbitals’ construction

(see Marzari and Vanderbilt PRB 1997, Amadon et al. PRB 2008, Aichhorn et al. PRB 2009)

other choices for correlated basis: atomic-like “partial waves”, NMTO etc. 

Choice of the correlated basis: Wannier functions
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t2g only all d+O-p

Example: peroxide SrVO3



Evaluating local Coulomb interaction

U can be adjusted to some experiment, or evaluated, e.g., by
Constrained Random Phase Approximation

Aryasetiawan, Imada, Georges, Kotliar, Biermann, Lichtenstein, PRB 2004. 
[Figure from Hansmann et al., JPCM 2013]



Quantum impurity solvers

U)(0 G

Effective impurity problem

Impurity problem defined by the following action:

Result: 		��� � = − � �� � ��
� 0 	Σ(���)

• Numerical methods:

Quantum Monte-Carlo (QMC) family, e.g. continious-time QMC: stochastic summation 
of diagramatic contributions into one-electron Green’s function G() and/or more        

complicated two-electron GF 	����� �, ��, �� = � ��
� � �� �� ��

� �� �� 0

Exact diagonalization method: G0 is approximated by a discrete set of fictitious atomic 
levels coupled to the physical ones: 

G0

the Hamiltonian describing the real interacting level coupled to ns fictitious ones is then 
diagonalized

• Analytical methods: resummation of a subset of diagrams around non-interacting 
(FLEX,RPA) or atomic (non-crossing (NCA), one-crossing (OCA) approximations 

see more in, e.g., Kotliar et al. Rev. Mod. Phys. 2006, Gull et al. Rev. Mod. Phys. 2010 



See  Pourovskii et al. PRB 2007, Aichhorn et al., PRB 2011; Haule PRB 2009.

Fully self-consistent DFT+DMFT: updating charge



A metal!

DFT-LDA Kohn-Sham
Band structure

Reminder: DFT picture for the red pigment CeSF



U=4.8 eV and J=0.7 eV from cRPA

Tomczak, Pourovskii, Vaugier, Georges, Biermann,  PNAS  2013

DFT+DMFT spectral function
total f-only

Ce: 4�� configuration,
paramagnetic

4f-electron pigment CeSF with DFT+DMFT 



4f-electron pigment CeSF with DFT+DMFT: optical 
conductivity (A) and absorption (B)

Calculated color of CeSF:

diffuse reflectance

Tomczak, Pourovskii, 
Vaugier, Georges, 
Biermann, PNAS  2013


