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OUTLINE

The standard density-functional-theory (DFT) framework

An overview of correlated materials and DFT limitations in
decscribing them

Models of correlated systems

Dynamical mean-field theory (DMFT) and Mott transition in the
model context

DFT+DMFT: an ab initio framework for correlated materials



DFT: an effective one-electron theory

The conventional (density functional theory) approach to electronic structure:
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(Many-electron Schrodinger eq. For
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Effective one-electron theory:
_EVZ + Vg [n(r R R, R ] No interaction term in H.

All many-body effects are taken
into account implicitly in V.
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Provides good description for itinerant electron states characterized by wide bands
Often fails for (partially) localized states in narrow bands



Kinetic vs. potential energy competition and electronic correlations

Simple estimate of the key energy scales in solids (see A. Georges arXiv:0403123) :

){L(r — R) is an orbital for L={l,m} centered at cite R

h*V?2 (r—R) hopping matrix element, estimate for the kinetic
2m xrr energy, determining the bandwidth W

(LE /drxf(r—R)

. / 2 / / »  Screened Coulomb repulsion between
v /drdr 2L (r=R)[7Us(r =) |2 (r —R)| orbitals on the same site

2D ey S sy .. .
e e L 1).W >> [J: kinetic energy dominates; electrons
“atomic” U o 8 : . : :
i \ ] behave as weakly-renormalized quasiparticles
- Uin Ni metal ] _ _ _
S 15 : 2)[ W << U : on-site repulsion dominates, at each
2 I ' 3 site electrons adopt a configuration minimizing
=10 [ ‘ ] : .
[ A - potential energy, no conduction
5[ s . :
e S S creenedU 3). W ~ U : electrons moves in a strongly
o?'.“.'-.". fmumy ey o] correlated fashion. Strongly-correlated bad metals

0 10 20 30 40 30 _ . _
w (V) at the verge of Mott insulating behavior



Strongly-correlated materials

Systems with U>bandwidth are not described correctly within DFT-LDA/GGA
Important classes of those materials:

* Transition metal compounds:
TM-oxides (NiO, CoO, Fe,0;, V,0;...)
TM perovskites (SrVO,, CaVO,, LaTiO3, YTiO3...)

cuprate superconductors (La,_Sr,CuO,, Nd, Ce CuO,...)
manganites (LaMnO;).

Parameters controlling correlation strength: U, W, Ay, A

* Localized f- electron compounds:

lanthanide metals (Pr-Yb), oxides (Ln,0O; ), pnictides (LnN, LnP, LnAs)
heavy actinides (Am-Cf) and their compounds

Relevant parameters: intra-atomic U, J, Aq, crystal field A much smaller
f-states localized and posses local moments, often order magnetically at low T.

* Heavy-fermion compounds, Kondo lattices:

mainly Ce, Yb, and U compounds: CeAl3, CeCu2Si2, UPt3, CeRhiIn5...

At high T ~ localized f-el. compounds. At low T the local f~-moments screened by cond.

electrons. C(T)=yT with very large y (correspond. to m”~ ~100+1000). Often
superconducting atlow T.

« More exotic systems: organic conductors, optical lattices



Transition-metal oxides and peroxides

SrVO,, CaVO;, LaTiO,, YTIO;
Basic electronic structure:

* O2pandTM e, (d,,,,, d ,5-2)
form bonding anti-bonding states
* TM t,, (xy,xz,yz) are pinned at E;
* t,, states are quite localized,
U~3-5eV
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Localized Rare-earth compounds

Ce,0; volume underestimated by 14%

Ce,0;,

* In majority of lanthanides 4fs are localized
and do not contribute to bonding, W << U
They form local moments (a Curie
susceptibility) ordering at low T.
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* In LDA 4f states itinerant, pinned at E,
contribute to bonding — too small
volume, metallic state
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An example: CeSF — an f-electron pigment
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— \ DFT-LDA Kohn-Sham
/ Band structure
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Ce: 4f 1 configuration,

L > A paramagnetic

CeSF is a wide-gap semiconductor with a sharp absorption edge
however, DFT predicts it to be a metal...



Volume collapse in rare-earth and heavy actinides

Under pressure bandwidth increases and u/w4 Am and Cm metals under P
In result, f electrons delocalize, V4 and crystal. (Rev. Mod. Phys. 81 235 (2009)
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Due to complicated shapes of f-el. wave functions low-volume structures of RE and AC
metals are often quite complex




Lattice models of correlated materials

Several famous models have been proposed to capture strongly-correlated behavior while
keeping only most relevant parameters describing the competition between the hopping
and local Coulomb repulsion

Hubbard model (1b): The simplest model including only nearest neighbor hopping + on-site U

H = Z IRR’ CRO.CR/O- —+ & ZI’IRO- -+ l]an]an
RR’.c

Extended Hubbard model: includes as well the hopping between the correlated (d) and
ligand (p) band for a more realistic description of TM-oxides

de = — Z fpd RGPR,U+I7 C ‘|_ 8d 271R0+8P Z nR, —|— l]ddZnR|an
RR’.0 Ro R'oc

Periodic Anderson model: discards direct hopping between correlated orbitals, relevant for
localized RE, heavy-fermion compounds with very localized f-electrons:

Hpgy = Zekcligcko' + Z (Vi Crg fka +h.c) + &f 2 ’7£an~,~ UZ z”’Rom

ko kom Rom om

Even those simplified lattice models cannot be solved exactly apart from limiting cases
(zero U or hopping, 1d cases)



Impurity models

Impurity models (the Anderson model, P. W. Anderson 1961) were originally proposed to
describe formation local magnetic moments of TM impurities in metallic hosts

atomic

e —
Anderson impuritymodel: H = H.+ H —}—H +H,,

mix

describes a single impurity H atomic — Hd +HU — EdanG +U ’70’] ”dl

embedded into a host of non-interacting delocalized electrons H: = Z : O
2 Acr ko
‘c

localized impurity and itinerant states hybridize F, ;. = Z[V}c'kodﬁ + H.C.]

jo
For U>> [V, | AIM may be reduced to the Kondo model:
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~ ,

—&

describing interaction of itinerant electrons with localized spins

AIM and Kondo model were solved in 70s-80s by several techniques (renormalization group,
Bethe anzatz, large N-expansion), other numerical and analytical methods are available now



Mean-field theories: example of the Ising model

Ising model: 0 6 0
H=—->J;SS;—h)5 0 0 0
i

(i)

The average on-site magnetization is 77; = (S;) 9 0 6

We introduce a mean field Herr = — thffS,- that reproduces givenm;

= tanh(,b’hfﬂ ) — ﬁhff J — tanh_lm,-

—ﬂhieff _eﬂhieff

m, =<
I _pell eff
e Phy +eﬂh’

MF approximation= neglecting fluctuations of magnetization on neighboring sites:

eff _
hiff = h+ XJU m; 2 MF approximation
J

which allows one to obtain a closed equation for the magnetization:

m = tanh (Bh+z3Jm)

It becomes exact in the limit of coordination number Z— 00



Dynamical mean-field theory(DMFT)

Dynamical mean-field theory (Metzner/Vollhard PRL 89 and Georges/Kotliar PRB 92) relates
a correlated lattice problem (e.g. Hubbard model) to an auxiliary Anderson impurity model,
which can then be solved

Recalculating lattice
properties

Dynamical mean-field theory:
maps a correlated lattice problem
into an effective impurity
-------------------- problem

some reviews:
Georges et al. Rev. Mod. Phys. 1996
Georges arXiv:0403123



The dynamical mean-field theory: local GF and the bath

The lattice (Hubbard) model is described by the Hamiltonian:
2 lij cmcjg + UZn,ln,l + &o ano'

ij,c

and we may introduce local GF (in the imaginary time domain)

for a representative site: G (17— 1) = —(T¢;5(7 )Cﬁo_(fl))

and its Fourier transform Gj;(iwy,)
which is the local quantity ( «m; ») coupled to an effective bath (the rest of the lattice)
The representative site is described by effective AIM:

H v = Hatom + Hparh + Hcoupling

where {'} (5 ’I>
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where 9;5 /9] are the bath degrees of freedom



DMFT: the hybridization and bath Green’s functions
The electron hopping on/off the impurity is thus described by the bath Green’s function:

%_l(iw,,) = 1w, + U — &y — Aliwy,)

and the interaction term Un;n it defines an effective Anderson impurity problem for a
single correlated atom. Solution of this quantum impurity problem gives one the local
Green’s function.

One needs then to obtain the effective field ¥,(7 — r’) in terms of a local quantity.
defining the local self-energy : ¥, (i®,) = Gy (i) — G i)
1
10, + 1t — & — &g — 2(k,iwy,)

and lattice GF and self-energy: G(k,i®, ) =

we introduce the key mean-field approximation:
z:(kﬁla)n) = z:imp (la)n)

i.e. the self-energy is purely local. One obtains the DMFT self-consistency condition:

1

. . = Gliw;
%‘A(m),,) +Glim,) ! — g (i)




Iterative solution of DMFT equations

. . g / . . .
In practice one searches for the true Weiss field go( T—7 ) using an iterative procedure

EFFECTIVE LOCAL IMPURITY PROBLEM

Initial guess

for gO Effective bath THE

‘ o (iwn ) DMFT  |Local GF

LOOP (] (@wn)

SELF-CONSISTENCY ('O\'DITIO\'
1
Limp =%, (i) — Gipp10n)

Gioc = Zk[’wn + U — &k — Zimp(jwn)]

updated gO « 0, nen = G;:,i + Limp

—1



DMFT capturing the Mott transition: d—wo 1-band case

Hyu, = —t Z ((':‘U('ja - h.('.) - [-’Z i)
:

(i,3),0

on the « tree-like » Bethe lattice

withz—w: t=1/\z 2=5

has a particular simple DMFT self-consistency
condition (see Georges et al. Rev. Mod. Phys. 96)

L Non-interacting case: metal with semi-circular DOS

O Insulating limit: lower and upper Hubbard bands
each containing lelectron/site and separated by the
gap ~U

L Conecting those two limits:
with increasing U/W the system passes through a
correlated metal regime (3-peak structure)

followed by the Mott transition.

DENSITY OF STATES

1b Model evolution vs. U/W

‘
n I U/W = 0.5
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W= 1.2

U/W =2
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U Ep ‘U
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G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004).



An approach for real materials: DFT+DMFT framework

Combining ab initio band DFT methods with a DMFT treatment of correlated shells

_ AN+ + + _ .
H __Ztij CinCin T ZU/11/12/13/14Ci/11Ci/izci/13ci/14 = + Hy,, —Hpe
i,j

; i, 4.4
AN
from DFT-LDA

Crucial ingredients: DMFT LOOP
— choice of the localized basis [go ( i(DH a5

representing correlated states

— choice of the interaction vertex Impurity

solving

— DMFT impurity solvers
— self-consistency in the charge density [G (1’ a))] b

(Anisimov et al. 1997, Lichtenstein et al. 1998,
Review: Kotliar et al. Rev. Mod. Phys. 2006 ) Nk =




Choice of the correlated basis: Wannier functions

Wannier functions are constructed from Bloch eigenstates of the KS problem

V —ik-T r(k
- Lé]kc Z ("C(w) Uy, (1)

271)3
("’ ) . UEW
‘///zv>

Wa(r—T) =

H . — (k)
or in the k-space: ‘ Wﬂ€> = ZUW
veW

Optimizing U and increasing the range of bands W one may increase the localization of WF

Example: peroxide SrvO3
10 l

DOS(1/eV)

i Ll !

-6 -3 0
E-E_(cV)

Advantage: flexible, can be interfaced with any band structure method

Disadvantage: requires Wannier orbitals’ construction

(see Marzari and Vanderbilt PRB 1997, Amadon et al. PRB 2008, Aichhorn et al. PRB 2009)

other choices for correlated basis: atomic-like “partial waves”, NMTO etc.



Evaluating local Coulomb interaction

U can be adjusted to some experiment, or evaluated, e.g., by

Constrained Random Phase Approximation
PRPA

W Vba re. Vba re. W
@®NNNe = [ RO ] + oV
PRPA Ptarget

SN
Wrest Vbare. Vbare. VVrest
QTS = e e @AW

cRPA

U Imno— < (pl(pmlwreStl(pn(po >

Energy [eV]

Vdid <4 Vdd

Aryasetiawan, Imada, Georges, Kotliar, Biermann, Lichtenstein, PRB 2004.
[Figure from Hansmann et al., JPCM 2013]



Quantum impurity solvers

Impurity problem defined by the following action: P

B , : : B : :
S=- // drdr’ Z(L(T)Gaid(" )eg(r') + ] d7iHint! | Gy (@)
0 o, : ; 0 : :

Result: Gup(7) = — <T [ca(r)cg(O)D = X(iwy,) T
Effective impurity problem

e Numerical methods:

Quantum Monte-Carlo (QMC) family, e.g. continious-time QMC: stochastic summation
of diagramatic contributions into one-electron Green'’s function G(t) and/or more

complicated two-electron GF Ggp,5(7, 71, T2) = <T [cg(T)ca(rl)c;(rz)ca(O)D

Exact diagonalization method: G, is approximated by a discrete set of fictitious atomic
levels coupled to the physical ones: ng V2
GOZfCU,,+,(L— s

~

p=2 lw,—€,
the Hamiltonian describing the real interacting level coupled to n fictitious ones is then
diagonalized

* Analytical methods: resummation of a subset of diagrams around non-interacting
(FLEX,RPA) or atomic (non-crossing (NCA), one-crossing (OCA) approximations

see more in, e.g., Kotliar et al. Rev. Mod. Phys. 2006, Gull et al. Rev. Mod. Phys. 2010



Fully self-consistent DFT+DMFT: updating charge

DMFT LOOP

%o (i@)]

Impurity
solving

[G (iw)]ab
[Z(io)] g

See Pourovskii et al. PRB 2007, Aichhorn et al., PRB 2011; Haule PRB 2009.
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Reminder: DFT picture for the red pigment CeSF
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4f-electron pigment CeSF with DFT+DMFT

8 Ce: 4f 1 configuration,
/ paramagnetic
\"’ ) ~
:i DFT+DMFT spectral function @ P50 00

total f-only (@W
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Energy (V)
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U=4.8 eV and J=0.7 eV from cRPA

Tomczak, Pourovskii, Vaugier, Georges, Biermann, PNAS 2013



4f-electron pigment CeSF with DFT+DMFT: optical
conductivity (A) and absorption (B)
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Calculated color of CeSF:




