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Outline

A Tutorial

 The CASSCF/CASPT2 Paradigm
» General rules for selecting an active space
 Orbital representations: atomic orbitals

» Orbital representations: localized molecular orbitals
e Same-but-different: purpose designed active space
* Dirty tricks: Active space stabilization



The CASPT2/CASSCF Paradigm

Is a single determinant wave function enough?
No!
Because It can not:
- In general describe a Bond Formation/Breaking
- describe a Transition State Structure
- describe a Conical Intersection
- describe a singlet biradical structure
- on equal footing describe several states at the same

time.

(Photo)Chemistry include many situations in which two
or several electronic configurations are near or exactly
degenerate. We need a method which can simulate

this.



Breaking the H_bond

increasing energy

0,(r)=N,(1s,(r)—1sg(r))

(empty) antibonding molecular orbital
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(full) bonding molecular orbital

the hydrogen molecule resulting from the
combination of the two hydrogen atoms
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H2 wave functions

The molecular orbitals:
Oy(r)=Ny(1s,(r)+ 1s4(r))
0, (r)=N,(1s,(r)=1s5(r))

The SCF wave functgon: EANED

V=0, r1)0_g(r2>b2,0
w:Nz(lsA(rl) 1s,(ry)+1s,(r;)1s5(r,)+1s5(r)1s ,(ry)+1s,(r,)1s5(r;)) 6,

Energy —s>
e
W

The single configuration wave function contains
both terms as “H + H”, “H + H™ and “H" + H” in a
fixed ratio! We need some flexibility.

The CAS wave function:
W:(C115A(r1> 1SA(r2)+C2 1SA(r1) 1SB<r2>
+C3 1SB(r'1> 1SA(r2>+C4 1SB<r1>1SB<r2))62,0



H the CASSCF way: 2-In-2
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The CASSCF wave function has the correct asymptotic
behavior!



Avoided crossings: a two state
phenomena - the mother of
transition states
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Avoided crassing point

Fineo

Avoided Crossing

Conical Intersection



The Complete Active Space SCF

The CASSCF model ;

i All : .
active > * |nactive orbitals

excita- ) :
space  Active space orbitals

tions _ ;
 Virtual orbitals

The CASSCF is a Full-Cl in a
subspace of the orbital space.
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It is a spin eigenfunction.

Natural orbital analysis gives partial

The (SA-)CASSCF model treats occupation numbers (0-2).

the static correlation.
For qualitative accuracy add e-

e correlation with perturbation -
((X)MS)-CASPT2.

State Average CASSCF treats several
states at the same time.



The Restricted Active Space SCF

RASSCF

Virtual Orbitals
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Generalized active space SCF - GASSCF



The active space

molecule

*
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Select active orbitals to:

*Give correct dissociation
«Correct degeneracies

( iIncomplete shells)
Correct excited states
*Treat near-degeneracies

The orbitals around the Fermi
gap are the candidates (be
carefulll!).

Perfect pairs. o-o*, 1-11*, 0-0*
Lone pairs (n): maybe.



General rules for selecting active
orbitals: atoms and atomic ions

2" row elements: 2s and 2p (more than 4 valence
electrons skip the 2s).
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General rules for selecting active
orbitals: atoms and atomic ions

3" row elements: 3s and 3p (more than 3 valence
electrons skip the 3s).
As the sp™ hybridization is reduced down the
periodic table do not include the s-shell.
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General rules for selecting active
orbitals: atoms and atomic ions

1° Transition Metals: 4s, 3d and 4p (more than 5
d-electrons might need 4d — double-shell effect).
For higher row TMs the double-shell effect is

: red uced :
Li | Be AL AL
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General rules for selecting active
orbitals: atoms and atomic ions

Lanthanides: 4f, 6s, 6p and 5d
Actinides: 5f, 7s, 7/p and 6d
Be careIuI wrt double-shell effects for the {-orbitals
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General rules for selecting active
orbitals: atoms and atomic ions

For Rydberg states: include these In the active
space.

Note: use Rydberg specific basis sets!



General rules for selecting active
orbitals: Molecules

ook for:

o “correlating pairs”. o-o*, 1-11*, etc.
e orbitals of the excited state: n and Rydberg
» “equivalent” partners

What Is the process we are studying?

Some sloppy rules:

* CH bonds can be inactive

 All p orbitals in unsaturated molecule

* Rydberg orbitals for excited states above 5 eV



Orbital Representation

After we have selected the active space (x-in-y),
which is an intellectual challenge,we have to
generate It, this iIs more of a technical challenge!



Orbital Representations:
atomic orbitals
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Orbital Representations:
localized molecular orbitals

Localized occupied and virtual SCF orbitals, respectively.



Orbital Representations:
the SCF orbitals

The SCF orbitals are delocalized!
Virtual orbitals are not well defined!

Note that these orbitals are from a minimal basis calculation.



Orbital Representations:
the SCF orbitals

The SCF orbitals are delocalized!
Useless for localized processes (e.g. H
abstraction)



Orbital Representations:
the virtual SCF orbitals

Virtual Orbitals are not well define!
The six lowest virtual SCF 1t orbitals in a triple-¢
basis.



Orbital representations:
Strategy

e Use localized orbitals, AOs or MOs

Do “never” use SCF orbitals

» Start with a MB basis and expand

 Double check all the time!

* Protect your orbitals once you have found them
e Be paranoid



Same-but-Different

The MCSCF solution to a specific active space Is
not unique!

Demonstration: ‘
For butadiene we would like to study the
fragmentation process of:
a)CH - 2CH,
b)CH - CH,+CH,
In both cases we will have the 4 1t orbitals active
together with the correlating pair of the bond
which we are breaking (o-0%), that Is a 6-in-6 CAS
In both cases.



Same-but-Different:
The Starting Orbitals

The T1-Space: %& B%
e ®

The correlating pairs in the o-space:

0 W g ue

CH - 2C, CH, - CH, +CH,

By carefully selectlng the starting orbitals | select
the “most likely” CASSCF solution.



Same-but-Different:
The CASSCF Orbitals

CH, - 2CH, CH - CH, + c:H2

B|ng0! Note the active space on the right does not preserve equivalent
methyl bonds.



Dirty Tricks:
Active Space Stabllization

The
mathematic
(local)
solution to
the MCSCF
equations
are those
that have
strong
correlating
pairs.

(.02

1 98 1.92 1 86

The o bonds and lone pairs are the general problems.



Dirty Tricks:

Two near-degeneracies destabilize the (local)

mathematical solution:

» Active orbitals with an occupation close to 2

» Active orbitals with an occupation close to O
The orbitals can slip into the inactive or the virtual

space, respectively.

We need to have a mathematical model for which
the occupation number are not close to 2 or 0!



Dirty Tricks:

The solution to the problem is SA-CASSCF!

t
t

"he SA-CASSCF occupation numbers depend on
ne average occupation numbers of all the states
nat are included In the calculation.

Stabilize o orbitals by including a state in which

you have some excitation out of the o orbital.

Stabilize n orbitals by including a state in which

you have some (n-o* or) n-1t* excitation.

This trick is only possible if you start with the
correct active orbital manifold!!!



Summary

 Why Multi-configurational Methods

*The CASSCF model

* The active space

* Different orbital representations

* Be careful with SCF orbitals

» Standard AO active orbitals

MO active orbitals

 Localized starting MO orbitals

* The solution to the MSCF eq. is not unique!!!
 Tricks

 Dynamical Electron correlation and Dispersion
with (MS-)CASPT2



Multiconfigurational

Quantum

emistry
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