Practical Issues on the Use of the CASPT2/CASSCF Method in Modeling Photochemistry: the Selection and Protection of an Active Space

> Roland Lindh Dept. of Chemistry – Ångström The Theoretical Chemistry Programme Uppsala University Sweden

Outline

A Tutorial

- The CASSCF/CASPT2 Paradigm
- General rules for selecting an active space
- Orbital representations: atomic orbitals
- Orbital representations: localized molecular orbitals
- Same-but-different: purpose designed active space
- Dirty tricks: Active space stabilization

The CASPT2/CASSCF Paradigm

Is a single determinant wave function enough? No!

Because it can not:

- in general describe a Bond Formation/Breaking
- describe a Transition State Structure
- describe a Conical Intersection
- describe a singlet biradical structure
- on equal footing describe several states at the same time.

(Photo)Chemistry include many situations in which two or several electronic configurations are near or exactly degenerate. We need a method which can simulate this.

Breaking the H₂ bond

 $\sigma_{\mu}(r) = N_{\mu}(1s_{A}(r) - 1s_{B}(r))$

$$\sigma_g(r) = N_g(1s_A(r) + 1s_B(r))$$

H_{2} wave functions

The molecular orbitals:

$$\sigma_{g}(r) = N_{g}(1s_{A}(r) + 1s_{B}(r))$$

$$\sigma_{u}(r) = N_{u}(1s_{A}(r) - 1s_{B}(r))$$
The SCF wave function:

$$\psi = \sigma_{g}(r_{1})\sigma_{g}(r_{2}) \cup_{2,0}^{4.52 \text{ eV}} + 4 \text{ distance} \rightarrow$$

$$\psi = N_{g}^{2}(1s_{A}(r_{1})1s_{A}(r_{2}) + 1s_{A}(r_{1})1s_{B}(r_{2}) + 1s_{B}(r_{1})1s_{A}(r_{2}) + 1s_{B}(r_{1})1s_{B}(r_{2})) \theta_{2,0}$$

The single configuration wave function contains both terms as "H + H", "H⁻ + H⁺" and "H⁺ + H⁻" in a fixed ratio! We need some flexibility. The **CAS** wave function: $\psi = (C_1 1 s_A(r_1) 1 s_A(r_2) + C_2 1 s_A(r_1) 1 s_B(r_2)$

 $+C_{3} 1s_{B}(r_{1}) 1s_{A}(r_{2}) + C_{4} 1s_{B}(r_{1}) 1s_{B}(r_{2}))\theta_{2,0}$

The CASSCF wave function has the correct asymptotic behavior!

Avoided crossings: a two state phenomena - the mother of transition states

Reaco

The Complete Active Space SCF

The (SA-)CASSCF model treats the static correlation. For qualitative accuracy add ee correlation with perturbation -((X)MS)-CASPT2. The CASSCF model :

- Inactive orbitals
- Active space orbitals
- Virtual orbitals

The CASSCF is a Full-CI in a subspace of the orbital space.

It is a spin eigenfunction.

Natural orbital analysis gives partial occupation numbers (0-2).

State Average CASSCF treats several states at the same time.

The Restricted Active Space SCF

RASSCF

Generalized active space SCF - GASSCF

The active space

Select active orbitals to:

Give correct dissociation
Correct degeneracies
(incomplete shells)
Correct excited states
Treat near-degeneracies

The orbitals around the Fermi gap are the candidates (be careful!!!).

Perfect pairs: σ - σ *, π - π *, δ - δ * Lone pairs (n): maybe.

©1996 Encyclopaedia Britannica, Inc.

2nd row elements: 2s and 2p (more than 4 valence electrons skip the 2s).

3rd row elements: 3s and 3p (more than 3 valence electrons skip the 3s).

As the sp^x hybridization is reduced down the periodic table do not include the *s*-shell.

1	IA H	IIA		Periodic Table														0 2 He
2	3 Li	4 Be	🖌 of the Elements 🛽 🖥 📽 🗖 🗗														9 F	10 Ne
3	11 Na	12 Mg	ШВ	IVB	٧B	ΥIB	VIIB		— YII —		IB	IB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 NS	108 HS	109 Mt	110 110	111 111	112 112	113 113					

*Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Series	Се	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Ho	Er	Tm	Yb	Lu
+ Actinide	90 Th	91 Pa	92 - U	93 ND	94 Pu	95 ≜m	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Ir
Series	•••		Ň			~	C III	DK	~	23	••••	111.4		

1st Transition Metals: 4s, 3d and 4p (more than 5 d-electrons might need 4d – double-shell effect).
For higher row TMs the double-shell effect is

Lanthanides: 4*f*, 6*s*, 6*p* and 5*d* Actinides: 5*f*, 7*s*, 7*p* and 6*d*

Be careful wrt double-shell effects for the *f*-orbitals

1	1 H	IIA	Periodic Table														VIIA	2 He
2	3 Li	4 Be		of	tl	ne	Е	5 B	⁶ С	7 N	8 0	9 F	10 Ne					
3	11 Na	12 Mg	ШB	IVB	٧B	VIB	VIIB		— VII –		IB	IB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +AC	104 Rf	105 Ha	106 Sg	107 NS	108 Hs	109 Mt	110 110	111 111	112 112	113 113					

*Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Series	Се	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Но	Er	Tm	Yb	Lu
+ Actinide Series	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

For Rydberg states: include these in the active space.

Note: use Rydberg specific basis sets!

General rules for selecting active orbitals: Molecules

Look for:

- "correlating pairs": σ - σ *, π - π *, etc.
- orbitals of the excited state: n and Rydberg
- "equivalent" partners

What is the process we are studying?

Some sloppy rules:

- CH bonds can be inactive
- All p orbitals in unsaturated molecule
- Rydberg orbitals for excited states above 5 eV

Orbital Representation

After we have selected the active space (x-in-y), which is an intellectual challenge,we have to generate it, this is more of a technical challenge!

Orbital Representations: atomic orbitals

Orbital Representations: localized molecular orbitals

Localized occupied and virtual SCF orbitals, respectively.

Orbital Representations: the SCF orbitals

The SCF orbitals are *delocalized*! Virtual orbitals are not well defined!

Note that these orbitals are from a minimal basis calculation.

Orbital Representations: the SCF orbitals

The SCF orbitals are *delocalized*! Useless for localized processes (e.g. H abstraction)

Orbital Representations: the virtual SCF orbitals

Virtual Orbitals are not well define! The six lowest virtual SCF π orbitals in a triple- ζ basis.

Orbital representations: Strategy

- Use localized orbitals, AOs or MOs
- Do "never" use SCF orbitals
- Start with a MB basis and expand
- Double check all the time!
- Protect your orbitals once you have found them
- Be paranoid

Same-but-Different

The MCSCF solution to a specific active space is **not** unique!

Demonstration:

For butadiene we would like to study the fragmentation process of:

a) $C_4H_6 \rightarrow 2C_2H_3$ b) $C_4H_6 \rightarrow C_3H_4 + CH_2$

In both cases we will have the 4 π orbitals active together with the correlating pair of the bond which we are breaking (σ - σ *), that is a 6-in-6 CAS in both cases.

Same-but-Different: The Starting Orbitals

The correlating pairs in the σ -space:

 $C_4H_6 \rightarrow 2C_2H_3$ $C_4H_6 \rightarrow C_3H_4 + CH_2$

By carefully selecting the starting orbitals I select the "most likely" CASSCF solution.

Same-but-Different: The CASSCF Orbitals

Bingo! Note the active space on the right does not preserve equivalent methyl bonds.

Dirty Tricks: Active Space Stabilization

The σ bonds and lone pairs are the general problems.

Dirty Tricks:

Two near-degeneracies destabilize the (local) mathematical solution:

- Active orbitals with an occupation close to 2
- Active orbitals with an occupation close to 0
 The orbitals can slip into the inactive or the virtual space, respectively.

We need to have a mathematical model for which the occupation number are not close to 2 or 0!

Dirty Tricks:

The solution to the problem is SA-CASSCF!

The SA-CASSCF occupation numbers depend on the average occupation numbers of all the states that are included in the calculation.

-Stabilize σ orbitals by including a state in which you have some excitation out of the σ orbital. -Stabilize n orbitals by including a state in which you have some (n- σ * or) n- π * excitation.

This trick is only possible if you start with the correct active orbital manifold!!!

Summary

- Why Multi-configurational Methods
- The CASSCF model
- The active space
- Different orbital representations
- Be careful with SCF orbitals
- Standard AO active orbitals
- MO active orbitals
- Localized starting MO orbitals
- The solution to the MSCF eq. is not unique!!!
- Tricks
- Dynamical Electron correlation and Dispersion with (MS-)CASPT2

Multiconfigurational Quantum Chemistry

Björn Roos | Roland Lindh | Per Åke Malmqvist Valera Veryazov | Per-Olof Widmark

WILEY