Nonlinear X-ray-Matter interaction with X-ray Lasers

Andreas Scherz
European XFEL
Summary

Part 1 (Tuesday)
- Spectroscopy and Microscopy
- XFEL and SASE radiation
- Stimulated emission
- Nonlinear response at x-ray energies

Part 2 (Wednesday)
- Nonlinear absorption
- Three-wave mixing
- Four-wave mixing
SPECTROSCOPY AND MICROSCOPY
Resonant vs non-resonant x-ray processes

Resonant processes changes cross sections by orders of magnitude

Courtesy J. Stöhr
Transition rates of resonant X-ray Processes

X-Ray Absorption
- empty states
- valence shell
- $\hbar \omega_1$

X-Ray Emission
- empty states
- core shell
- $\hbar \omega_2$

Resonant Elastic Scattering
- empty states
- valence shell
- $\hbar \omega_1$
- $\hbar \omega_1$

Resonant Inelastic Scattering
- empty states
- core shell
- $\hbar \omega_1$
- $\hbar \omega_2$
Transition rates of resonant X-ray Processes

\[T_{if} = \frac{2\pi}{\hbar} \left| \langle f | \mathcal{H}_{\text{int}} | i \rangle + \sum_j \frac{\langle f | \mathcal{H}_{\text{int}} | j \rangle \langle j | \mathcal{H}_{\text{int}} | i \rangle}{\varepsilon_i - \varepsilon_j} \right|^2 \delta(\varepsilon_i - \varepsilon_f) \rho(\varepsilon_f) \]

Fermi's Golden rule

Kramers - Heisenberg
Measurement of resonant X-ray Processes

- Elastic scattering
- Diffraction
- X-ray emission
- Inelastic scattering
- Absorption

Very low signal!

Courtesy J. Stöhr
X-ray Spectro-Microscopy

- X-ray tunability: elemental and chemical specificity
- X-ray polarization XMCD, XMLD
- Buried Structures

X-ray view of Exchange Bias

X-ray Spectro-Microscopy

- X-ray tunability: elemental and chemical specificity
- X-ray polarization XMCD, XMLD
- Buried Structures

Tuning to absorption resonances

Non-Resonant

XMCD

Photon energy (eV)

775 785

magnetic domains
Co/Pt multilayers

Transmission

October 4th/5th, 2016 - AlbaNova University Centre, Stockholm, Nordita School on Photon-Matter Interaction
Andreas Scherz, European XFEL
Tuning to absorption resonances

Resonant

magnetic domains
Co/Pt multilayers

Transmision
XMCD

Photon energy (eV)

775 785
Fourier Transform Spectro-Holography

FTH Recording

- Using holographic mask
- Exploiting XMCD to image magnetic domains
- Resolution < 50nm

FTH Reconstruction
- Need a sufficient amount of photons
- Need them in a very short time
- *Nonperturbative*: Damage to the sample must occur after snapshot
 XFEL and SASE radiation
Single shot image requires:
- Full field microscopy
- Coherent x-ray compatibility
- Robust and unique image reconstruction
- High photon efficient method

Single shot imaging to study:
- Non periodic structures in their “instant” state
- High resolution imaging beyond 10nm
- Fast dynamics on relevant length scales

European XFEL
- 1-100fsec
- 10mJ / pulse at soft x-ray wavelengths
- 0.1-1% bandwidth
- 10^14 photons/pulse
- Full transverse coherent
Facility overview

DESY-Bahrenfeld

- Electron source
- Linear accelerator begins
Nonlinear X-ray-Matter Interaction with X-ray Lasers

Facility overview

European XFEL

DESY-Bahrenfeld

- Electron source
- Linear accelerator begins

Superconducting electron accelerator
Facility overview

- Osdorfer Born
 - Electron beam to photon beamlines
 - Undulator systems begin

- DESY-Bahrenfeld
 - Electron source
 - Linear accelerator begins

Superconducting electron accelerator
Facility overview

Schenefeld
- Experiment hall
- Laboratories
- Offices

Osdorfer Born
- Electron beam to photon beamlines
- Undulator systems begin

DESY-Bahrenfeld
- Electron source
- Linear accelerator begins

Superconducting electron accelerator
Optical beam transport and instruments

<table>
<thead>
<tr>
<th>Undulator Segment</th>
<th>FEL radiation energy [keV]</th>
<th>Wavelength [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASE 1</td>
<td>3 - over 24</td>
<td>0.4 - 0.05</td>
</tr>
<tr>
<td>SASE 2</td>
<td>3 - over 24</td>
<td>0.4 - 0.05</td>
</tr>
<tr>
<td>SASE 3</td>
<td>0.27 - 3</td>
<td>4.6 – 0.4</td>
</tr>
</tbody>
</table>

- **Orange color**: X-ray optics & Beam Transport
- **430 m**

Legend
- electron tunnel
- photon tunnel
- undulator
- electron switch
- electron bend
- electron dump

Additional Information

- **Linear accelerator** for electrons (10.5, 14.0, 17.5 GeV)
- **SASE 2** 0.05 nm - 0.4 nm
- **SASE 1** 0.05 nm - 0.4 nm
- **SASE 3** 0.4 nm - 4.7 nm
Hard X-rays

SPB/SFX: Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography
- Will determine the structure of single particles, such as atomic clusters, viruses, and biomolecules

MID: Materials Imaging and Dynamics
- Will be able to image and analyze nano-sized devices and materials used in engineering

FXE: Femtosecond X-Ray Experiments
- Will investigate chemical reactions at the atomic scale in short time scales—molecular movies

HED: High Energy Density Physics
- Will look into some of the most extreme states of matter in the universe, such as the conditions at the center of planets

Soft X-rays

SQS: Small Quantum Systems
- Will examine the quantum mechanical properties of atoms and molecules.

SCS: Spectroscopy and Coherent Scattering
- Will determine the structure and properties of complex materials and nano-sized structures.
Statistical properties of SASE radiation and bandpass effects

SASE pulses after monochromator close to transform limit

SCS X-ray beam delivery using monochromator for time-resolved spectroscopy (100x100µm²)

(PINK BEAM: up to 10^{14} photons per pulse)

(Pink Beam: up to 10^{18}-10^{20} W/cm²)
Number of photons in coherence volume

<table>
<thead>
<tr>
<th>source</th>
<th>photon energy</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg lamp</td>
<td>4.9 eV</td>
<td>3×10^{-3}</td>
</tr>
<tr>
<td>synchrotron undulator</td>
<td>6.4 keV</td>
<td>2×10^{-3}</td>
</tr>
<tr>
<td>He-Ne laser</td>
<td>1.96 eV</td>
<td>2×10^{7}</td>
</tr>
<tr>
<td>XFEL</td>
<td>6.4 keV</td>
<td>2×10^{9}</td>
</tr>
</tbody>
</table>
number of simultaneous coherent x-rays

“simultaneous” is defined by atomic decay clock ~ 1 fs

Storage ring:

10^{14} phot./eV/s \rightarrow 10^{-1} phot./eV/fs “one photon at a time”
“simultaneous” is defined by atomic decay clock ~ 1 fs

Storage ring:

10^{14} phot./eV/s \rightarrow 10^{-1} phot./eV/fs “one photon at a time”

X-Ray lasers 10^9 phot./fs

Typical x-ray pulse: $\hbar \omega = 778$ eV, $\Delta E = 1$ eV

- ~ 50 fs
- $\sim 15 \mu$m
- ~ 1.8 fs
- ~ 550 nm
- Coherent wave packet
Single-shot FTH

- Zero order beam and Circular Polarizer,
- >100 mJ/cm2,
- 70fs pulse duration
Single-shot FTH

- Zero order beam and Circular Polarizer
- >100mJ/cm², 70fs pulse duration

Second shot
Single shot imaging of magnetic nanostructure

Monochromator: Co L3 edge (778.8eV) with 0.5eV bandwidth

Photons after the polarizer: 1×10^9 photons/pulse

Focus at sample: $10 \times 30 \mu m^2$

Shot-shot intensity jitter: Fluences from 1 to 30mJ/cm2

Nominal pulse durations: 80fs and 360fs

Imaging threshold

1.5x10^5 photons detected in a 80fs x-ray pulse
Spatial multiplexing to improve image quality by up to a factor 4 (15 ref.)

Combination of resonant enhancement, phase recording and spatial multiplexing

Imaging threshold as low as 5mJ/cm^2
Single Shot Holography

- Using Fourier transform holography, obtain real-space image of magnetic domains.
- Diffraction from a single x-ray pulse (~5 mJ/cm²).
- We can combine this with pump-probe techniques to make time-resolved movies!
- Attain high resolution in single shot:

Critical time scale of stimulated x-ray processes

Stimulated processes must be triggered before spontaneous excited state decays

“atomic clock” = total decay time = a few femtoseconds
Amplified stimulated emission in a gas

LETTER

doi:10.1038/nature10721

Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser

Nina Rohringer¹, Duncan Ryan², Richard A. London¹, Michael Purvis³, Felicie Albert¹, James Dunn¹, John D. Bozek³, Christoph Bostedt¹, Alexander Graf, Randal Hill¹, Stefan P. Hau-Riege¹ & Jorge J. Rocca²

Pulse length 40-80 fs
Pulse energy < 0.27 mJ
Power density < 2*10¹⁷ W/cm²

Atomic inner-shell X-ray laser

LETTER

Stimulated X-ray emission for materials science

$I = 1 \times 10^{16} \frac{W}{cm^2}$

Detected conversion is 10^{-11}, stimulation enhancement by a factor ~ 2
Single shot diffraction atomic versus electronic structure

atomic structure: single shot pattern of virus or crystal

magnetic structure: Co/Pt domains
50 fs pulses

- 1 KJ/cm²
- 1 J/cm²
- 1 mJ/cm²
- 30 mJ/cm²
Summary

Part 1 (Tuesday)
- Spectroscopy and Microscopy
- XFEL and SASE radiation
- Stimulated emission

Part 2 (Wednesday)
- Nonlinear absorption
- Three-wave mixing
- Four-wave mixing
NONLINEAR ABSORPTION
Extension to High Intensity Single Shots

Wu et al., PRL 117, 027401 (2016)
If diffraction scales linearly with intensity:

$$\text{High Intensity Pattern} = \text{Low Intensity Pattern} \times \text{Intensity Ratio}$$

Wu et al., PRL 117, 027401 (2016)
If diffraction scales linearly with intensity:

\[
\text{High Intensity Pattern} = \text{Low Intensity Pattern} \times \text{Intensity Ratio}
\]

Increase intensity to \(~300\text{mJ/cm}^2\)

Wu et al., PRL 117, 027401 (2016)
If diffraction scales linearly with intensity:

\[
\text{High Intensity Pattern} = \text{Low Intensity Pattern} \times \text{Intensity Ratio}
\]

Increase intensity to ~300mJ/cm²
If diffraction scales linearly with intensity:

\[
\text{High Intensity Pattern} = \text{Low Intensity Pattern} \times \text{Intensity Ratio}
\]

Increase intensity to \(\sim 300 \text{mJ/cm}^2 \)
If diffraction scales linearly with intensity:

\[
\text{High Intensity Pattern} = \text{Low Intensity Pattern} \times \text{Intensity Ratio}
\]

Increase intensity to \(\sim 300 \text{mJ/cm}^2\)

- **Low Intensity**
 - 0.6 mJ/cm\(^2\)
 - \(x\,500\)

- **High Intensity**
 - 272 mJ/cm\(^2\)
 - 1500

Wu et al., PRL 117, 027401 (2016)
Two main observations:
1) Strong decrease in magnetic speckle intensity (loss of magnetic contrast)
2) Decrease in charge scattering
Two main observations:
1) Strong decrease in magnetic speckle intensity (loss of magnetic contrast)
2) Decrease in charge scattering
Two main observations:
1) Strong decrease in magnetic speckle intensity (loss of magnetic contrast)
2) Decrease in charge scattering

Increase intensity to ~300 mJ/cm²

Wu et al., PRL 117, 027401 (2016)
Two main observations:
1) Strong decrease in magnetic speckle intensity (loss of magnetic contrast)
2) Decrease in charge scattering

Wu et al., PRL 117, 027401 (2016)
Two main observations:
1) Strong decrease in magnetic speckle intensity (loss of magnetic contrast)
2) Decrease in charge scattering
Single shot diffraction of atomic versus magnetic structure

atomic structure: single shot pattern of virus or crystal

> 10^3 difference in fluence!

magnetic structure: Co/Pt domains 50 fs pulses
$\psi_{tot}(r \simeq z) = \exp[ik_0z] + \frac{\exp[ikr]}{r} f(q)$

$\psi_{tot} \simeq \exp[ikz] \left\{ 1 + \frac{\exp[ik(x^2 + y^2)/2z]}{z} f(q \simeq 0) \right\}$

in the forward direction we require

$\int ds |\psi_{tot}|^2 = \pi R^2 - \frac{4\pi}{k} \text{Im} \{f(q = 0)\}$

$kR^2/z \gg 2\pi$ and $R/z \ll 1$

$\sigma_{sc} = 4\pi(f'^2 + f''^2)$

$\sigma_{abs} = \frac{\Gamma A}{\Gamma} 2\lambda f'''$

Optical constants, response function and their relation to the atomic scattering length

Refractive index and electric susceptibility

\[n_\omega^2 = 1 + \chi(\omega) = 1 + \chi'(\omega) + i\chi''(\omega) \]

Optical constants

\[n_\omega = 1 - \delta_\omega + i\beta_\omega \]

Atomic scattering length

\[f(\omega) = r_0 Z + f'(\omega) - i f''(\omega) \]

\[\delta_\omega = \frac{2\pi}{k^2} N_{at} (r_0 Z + f'(\omega)) \]

\[\beta_\omega = \frac{2\pi}{k^2} N_{at} f''(\omega) \]
Stimulated resonant process

(a) Two-photon picture

(b) Single EM-wave picture

absorption

stim. scatt.

wave in

wave out
Polarisability

\[P(t) = \varepsilon_0 \chi E(t) \]

\[P(t) = \varepsilon_0 \left(\chi^{(1)} + \chi^{(2)} E(t) + \chi^{(3)} E^2(t) + \cdots \right) E(t) \]

\[\equiv P^{(1)} + P^{(2)} + P^{(3)} + \cdots \]

\[\chi = \chi^{(1)} + \chi^{(2)} E(t) + \chi^{(3)} E^2(t) + \cdots \]
Polarisability and nonlinear media response
Estimate of higher order response

Polarisability
\[P(t) = \epsilon_0 \chi E(t) \]
\[P(t) = \epsilon_0 \left(\chi^{(1)} + \chi^{(2)} E(t) + \chi^{(3)} E^2(t) + \cdots \right) E(t) \]
\[\equiv P^{(1)} + P^{(2)} + P^{(3)} + \cdots \]
\[\chi = \chi^{(1)} + \chi^{(2)} E(t) + \chi^{(3)} E^2(t) + \cdots \]

When NL terms compete with the linear term?
\[\chi^{(n)} = \chi^{(n-1)} / |E| \approx \chi^{(n-1)} / |E_{\text{atom}}| \]
\[\hbar \omega_{L23} = \int_{2p}^{3d} dr \, eE_{\text{atom}} = eE_{\text{atom}} |\mathcal{R}_{2p3d}| \]
\[\mathcal{R}_{2p3d} = 6.2 \times 10^{-3} \text{ e nm} \]
Polarisability and nonlinear media response

Estimate of higher order response

Polarisability

\[P(t) = \varepsilon_0 \chi E(t) \]
\[P(t) = \varepsilon_0 \left(\chi^{(1)} + \chi^{(2)} E(t) + \chi^{(3)} E^2(t) + \cdots \right) E(t) \]
\[\equiv P^{(1)} + P^{(2)} + P^{(3)} + \cdots \]
\[\chi = \chi^{(1)} + \chi^{(2)} E(t) + \chi^{(3)} E^2(t) + \cdots \]

When NL terms compete with the linear term?

\[\chi^{(n)} = \chi^{(n-1)}/|E| \simeq \chi^{(n-1)}/|E_{\text{atom}}| \]
\[\hbar \omega_{L23} = \int_{2p}^{3d} dr eE_{\text{atom}} = eE_{\text{atom}} |\mathcal{R}_{2p3d}| \]
\[E_{\text{atom}} = 1.3 \times 10^{12} \frac{\text{V}}{\text{cm}} \]
The classical anharmonic oscillator model
off-resonant vs. resonant nonlinear response

\[U(x) = \frac{1}{2} m\omega_0^2 x^2 - \frac{1}{4} mbx^4 \]

- Nonlinearity constant: \(b = \frac{\omega_0^2}{d^2 a_0^2} \)
The classical anharmonic oscillator model
off-resonant vs. resonant nonlinear response

\[U(x) = \frac{1}{2} m \omega_0^2 x^2 - \frac{1}{4} mbx^4 \]

- Nonlinearity constant: \(b = \frac{\omega_0^2}{d^2 a_0^2} \)

\[\chi_{\text{off}}^{(3)}(\omega_0) = \frac{Ne^4}{\varepsilon_0 d^2 a_0^2 m^3 \omega_0^6} \]
The classical anharmonic oscillator model: off-resonant vs. resonant nonlinear response

\[U(x) = \frac{1}{2}m\omega_0^2 x^2 - \frac{1}{4}mbx^4 \]

- Nonlinearity constant: \(b = \frac{\omega_0^2}{d^2 a_0^2} \)

- Off-resonant Nonlinear response

\[\chi^{(3)}_{\text{off}}(\omega_0) = \frac{Ne^4}{\varepsilon_0 d^2 a_0^2 m^3 \omega_0^6} \]

- Resonant Nonlinear response

\[\chi^{(3)}_{\text{res}}(\omega_0) = \frac{Ne^4}{16\varepsilon_0 d^2 a_0^2 m^3 \omega_0^2 \gamma^4} \]
The classical anharmonic oscillator model
off-resonant vs. resonant nonlinear response

\[U(x) = \frac{1}{2}m\omega_0^2 x^2 - \frac{1}{4}mbx^4 \]

- Nonlinearity constant: \(b = \frac{\omega_0^2}{d^2a_0^2} \)

- Off-resonant Nonlinear response

\[\chi_{\text{off}}^{(3)}(\omega_0) = \frac{Ne^4}{\varepsilon_0 d^2a_0^2 m^3\omega_0^6} \]

- Resonant Nonlinear response

\[\chi_{\text{res}}^{(3)}(\omega_0) = \frac{Ne^4}{16\varepsilon_0 d^2a_0^2 m^3\omega_0^2\gamma^4} \]

- Co metal

\[N = 90 \text{ at./nm}^3 \]
\[d = 2.4 \text{ in units of the Bohr radius } a_0 \]
\[\gamma \simeq 0.4 \text{ eV} \]
The classical anharmonic oscillator model
off-resonant vs. resonant nonlinear response

\[U(x) = \frac{1}{2} m \omega_0^2 x^2 - \frac{1}{4} m b x^4 \]

- Nonlinearity constant: \(b = \frac{\omega_0^2}{d^2 a_0^2} \)

- Off-resonant Nonlinear response

\[\chi^{(3)}_{\text{off}}(\omega_0) = \frac{N e^4}{\varepsilon_0 d^2 a_0^2 m^3 \omega_0^6} \]

- Resonant Nonlinear response

\[\chi^{(3)}_{\text{res}}(\omega_0) = \frac{N e^4}{16\varepsilon_0 d^2 a_0^2 m^3 \omega_0^2 \gamma^4} \]

\[\chi^{(3)}_{\text{off}}(\omega_0) \approx 1.1 \times 10^{-27} \text{ cm}^2 \text{ V}^{-2} \]

\[\chi^{(3)}_{\text{res}}(\omega_0) \approx 2 \times 10^{-20} \text{ cm}^2 \text{ V}^{-2} \]

Nonlinear term at soft x-ray resonances becomes almost as large as the nonlinear term at optical wavelengths.
Optical Bloch equations of a two-level system

\[\dot{\rho}_{21} = -i(\omega_{21} + \gamma)\rho_{21} + \frac{i}{\hbar} V_{21} \Delta \rho_{21} \]

\[V_{21} = -\mu_{21} E(t) = -e \langle 1| \epsilon \rho |2 \rangle E e^{-i\omega t} \]

\[\rho_{22} \quad \text{wave in} \quad \text{wave out} \quad \rho_{12}, \rho_{21} \]

\[\rho_{11} \]

\[\Gamma = \Gamma_x + \Gamma_a \]

\[\gamma = \frac{1}{2} \Gamma_x + \frac{1}{2} \Gamma_a + \gamma_{el} \]
Excited state population in the Bloch picture

For $\tau_c \gg \hbar / \Gamma_A = 1.5 \text{fs}$ (Auger decay time)

Equilibrium excited state population:

Stöhr, Scherz, PRL 115, 107402 (2015)
Steady state response of the two level system

Polarisability

\[P = \chi \varepsilon_0 E = n_a \text{tr} (\rho \mu) = n_a (\rho_{12} \mu_{21} + \rho_{21} \mu_{12}) \]

Susceptibility

\[\chi = \frac{n_a |\mu_{21}|^2 (\omega - \omega_{21} - i\gamma) \Delta \rho_{21}^{\text{eq}}}{\varepsilon_0 \hbar \left[(\omega - \omega_{21})^2 + \gamma^2 + 4\gamma / \Gamma V^2 \right]} \]

Rabi Frequency

\[V = |\mu_{21}| |E| / \hbar \quad \Gamma_x = \frac{4\pi^2}{\varepsilon_0 \hbar \lambda^3} |\mu_{21}|^2 = \frac{4\pi^2 \hbar}{\varepsilon_0 \lambda^3} \frac{V^2}{|E|^2} \]
Nonlinear atomic scattering length

\[\chi = \chi^{(1)} \frac{1}{1 + \mathcal{G} \frac{\Gamma_x \gamma}{\Delta^2 + \gamma^2} \langle n_x \rangle} = \chi^{(1)} \mathcal{B}_{NL} \quad \mathcal{V}^2 = \frac{1}{4} \mathcal{G} \Gamma_x \Gamma \langle n \rangle \]

\[\chi^{(1)} = \frac{n_a \lambda^3}{4\pi^2} \frac{\Gamma_x (\Delta - i\gamma)}{\Delta^2 + \gamma^2} \Delta \rho_{21}^{eq} \]

atomic scattering length

\[f' = -\frac{\lambda}{4\pi} \frac{\Gamma_x \Delta}{\Delta^2 + \gamma^2} \Delta \rho_{21}^{eq} \mathcal{B}_{NL} - r_0 Z = f' \mathcal{B}_{NL} - r_0 Z \]

\[f'' = -\frac{\lambda}{4\pi} \frac{\Gamma_x \gamma}{\Delta^2 + \gamma^2} \Delta \rho_{21}^{eq} \mathcal{B}_{NL} = f'' \mathcal{B}_{NL} \]

\[\mathcal{B}_{NL} = \frac{1}{1 + \frac{4\pi}{\lambda} f'' \mathcal{G} \langle n \rangle} \]
TABLE 1: Polarization dependent parameters for the L_3 resonances of Fe, Co, and Ni metals. Listed are the atomic number densities ρ_a, the resonance energies and wavelengths, and the polarization dependent ($q = 0, \pm$) peak experimental cross sections σ_q^0 (1 Mb $= 10^{-4} \text{ nm}^2$), assuming propagation along the magnetization direction. Γ_q^\pm is the polarization dependent dipole transition width which includes the number of valence holes N_h, and Γ is the natural decay energy width [15].

<table>
<thead>
<tr>
<th></th>
<th>ρ_a [atoms/nm3]</th>
<th>ε_0 [eV]</th>
<th>λ_0 [nm]</th>
<th>σ_0^{+} [Mb]</th>
<th>σ_0^{0} [Mb]</th>
<th>σ_0^{-} [Mb]</th>
<th>$\Gamma^+ [\text{meV}]$</th>
<th>$\Gamma^0 [\text{meV}]$</th>
<th>$\Gamma^- [\text{meV}]$</th>
<th>$\Gamma [\text{eV}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>84.9</td>
<td>707</td>
<td>1.75</td>
<td>8.8</td>
<td>6.9</td>
<td>5.0</td>
<td>1.37</td>
<td>1.08</td>
<td>0.78</td>
<td>0.36</td>
</tr>
<tr>
<td>Co</td>
<td>90.9</td>
<td>778</td>
<td>1.59</td>
<td>7.9</td>
<td>6.25</td>
<td>4.65</td>
<td>1.208</td>
<td>0.96</td>
<td>0.715</td>
<td>0.43</td>
</tr>
<tr>
<td>Ni</td>
<td>91.4</td>
<td>853</td>
<td>1.45</td>
<td>5.1</td>
<td>4.4</td>
<td>3.7</td>
<td>0.675</td>
<td>0.575</td>
<td>0.48</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Onset of nonlinear contributions

High intensity

\[B_{NL} = \frac{1}{1 + \frac{4\pi}{\lambda} f_0'' G \langle n \rangle} \]

Med intensity

\[B_{NL} \simeq 1 - \frac{4\pi}{\lambda} G f_0'' \langle n \rangle \]

Low intensity

\[B_{NL} \simeq 1 \quad f_0', f_0'' \]
First and third order response function

Co L3 edge

\[\chi(1) \]

\[\chi(3) [\text{cm}^2/\text{N}^2] \]

Photon Energy [eV]

\[\times 10^{-19} \]
Gain Factor by coherent forward scattering

\[I_{FW} = |E|^2 \approx I_0 \left[1 - 2\lambda n_a \Delta f'' + 2\lambda^2 n_a^2 \Delta^2 f''^2 \right] \]

Gain factor: \[G = \frac{\lambda^2 N_a}{4\pi A} \]
Saturable X-ray absorption

(a) Co metal L_3 resonance

Eff. abs. cross section

Photon energy (eV)

(b) Trans. Intensity I_0^0 vs I_0^0

$I_0 [\text{mJ/cm}^2/\text{fs}]$

0.05 10 50 20 10 1 0.001

(c) XMCD $I_{\text{trans}}^0 / I_0^0 - I_{\text{trans}}^+ / I_0^+$

Sample thickness $d (\text{nm})$

$I_0 [\text{mJ/cm}^2/\text{fs}]$

0.001 1 10 20 50 100 1000

Stöhr, Scherz, PRL 115, 107402 (2015)
Experiment vs Theory

(a) Calculated SASE-stimulated coherent diffraction

(b) Integrated Intensity vs q (nm\(^{-1}\))

Low Intensity 0.6 mJ/cm\(^2\)/pulse
High Intensity 272 mJ/cm\(^2\)/pulse

Low Intensity 0.1 mJ/cm\(^2\)/pulse
High Intensity 270 mJ/cm\(^2\)/pulse

Contrast rel. to spontaneous

Wu et al., PRL 117, 027401 (2016)
Optical theorem

\[\psi_{\text{tot}}(r \approx z) = \exp[i k_0 z] + \frac{\exp[i k r]}{r} f(q) \]

\[\psi_{\text{tot}} \approx \exp[i k z] \left\{ 1 + \frac{\exp[i k (x^2 + y^2)/2z]}{z} f(q \approx 0) \right\} \]

in the forward direction we require

\[k R^2 / z \gg 2\pi \text{ and } R/z \ll 1 \]

\[\int d s |\psi_{\text{tot}}|^2 = \pi R^2 - \frac{4\pi}{k} \text{Im} \{ f(q = 0) \} \]

\[\sigma_{\text{tot}} = \sigma_{\text{sc}} + \sigma_{\text{abs}} = \sigma_{\text{ex}} = \frac{4\pi}{k} \text{Im} f(0) \]

\[\sigma_{\text{sc}} = 4\pi (f''^2 + f'''^2) \]

\[\sigma_{\text{abs}} = \frac{\Gamma}{\Gamma} 2 \lambda f''' \]

THREE-WAVE MIXING
FOUR-WAVE MIXING
Wave mixing in response theory

\[P(t) = \varepsilon_0 \left(\chi^{(1)} + \chi^{(2)} E(t) + \chi^{(3)} E^2(t) + \cdots \right) E(t) \]

\[P^{(1)}(\omega_2) = \varepsilon_0 \chi^{(1)}(\omega_2 = \pm \omega_1) E(\omega_1) \]
Wave mixing in response theory

\[P(t) = \varepsilon_0 \left(\chi^{(1)} + \chi^{(2)} E(t) + \chi^{(3)} E^2(t) + \cdots \right) E(t) \]

\[P^{(1)}(\omega_2) = \varepsilon_0 \chi^{(1)}(\omega_2 = \pm \omega_1) E(\omega_1) \]
Wave mixing in response theory

\[
P(t) = \varepsilon_0 \left(\chi^{(1)} + \chi^{(2)} E(t) + \chi^{(3)} E^2(t) + \cdots \right) E(t)
\]

\[
P^{(1)}(\omega_2) = \varepsilon_0 \chi^{(1)}(\omega_2 = \pm \omega_1) E(\omega_1)
\]

\[
P^{(2)}(\omega_3) = \varepsilon_0 \chi^{(2)}(\omega_3, \pm \omega_2, \pm \omega_1) E(\omega_2) E(\omega_1)
\]
Wave mixing in response theory

\[
 P(t) = \varepsilon_0 \left(\chi^{(1)} + \chi^{(2)} E(t) + \chi^{(3)} E^2(t) + \cdots \right) E(t)
\]

\[
P^{(1)}(\omega_2) = \varepsilon_0 \chi^{(1)}(\omega_2 = \pm \omega_1) E(\omega_1)
\]

\[
P^{(2)}(\omega_3) = \varepsilon_0 \chi^{(2)}(\omega_3, \pm \omega_2, \pm \omega_1) E(\omega_2) E(\omega_1)
\]

\[
P^{(3)}(\omega_4) = \varepsilon_0 \chi^{(3)}(\omega_4, \omega_3 \pm, \omega_2 \pm, \omega_1 \pm) E(\omega_3) E(\omega_2) E(\omega_1)
\]
Three wave mixing:
Second harmonic generation in diamond

\[I = 1 \times 10^{16} \frac{W}{cm^2} \]

\[\omega_2 = \omega_1 \]

\[\omega_3 = 2\omega_1 \]

\[\chi^2(7.3\, keV) \approx \sqrt{\nu_{\text{eff}}/E_{\omega_1}} = \sqrt{I_{\text{SHG}}/I_{\omega_1}}/E_{\omega_1} \]

\[= 5.8 \times 10^{-11}/2.5 \times 10^9 \frac{V}{cm} = 2.3 \times 10^{-20} \frac{cm}{V} \]
Four wave mixing (FWM)

General four wave mixing scheme

Transient grating spectroscopy

resonance Raman scattering (RIXS)

stimulated Raman scattering

Bruce Patterson, SLAC-TN-10-026 (2010)
Transient grating spectroscopy at XUV wavelengths

Four-wave mixing experiments with extreme ultraviolet transient gratings

\[\chi^{(3)} = \left(\frac{I_{\text{FWM}}}{I_0} \right)^{1/2} \left(\frac{E_{\text{EUV1}} E_{\text{EUV2}}}{E_{\text{EUV1}} E_{\text{EUV2}}} \right) \approx 6 \times 10^{-22} \text{m}^2 \text{V}^{-2} \]
Impulsively-driven coherent lattice dynamics

Transient Grating Experiments on V-SiO$_2$

Hyper- Raman modes due to coupled tetrahedral rotations $v_2 \approx 4.1$ THz

Raman modes due to tetrahedral bending $v_1 \approx 1.2$ THz

Acoustic-like excitations

Courtesy C. Masciovecchio
Two colour pulses schemes at XFEL’s

Two-colour pump-probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser

Courtesy C. Masciovecchio
CARS scheme using two-colour pulses from the machine and a x-ray split & delay line

Courtesy C. Masciovecchio
Beyond CARS
Coherent X-ray Raman spectroscopy

\[S(\Omega_1, \Omega_3) = \int d\tau_1 e^{i\Omega_1 \tau_1} \int d\tau_3 e^{i\Omega_3 \tau_3} I_0^{\text{het}}(\tau_1, \tau_3) \]

Tanaka, Mukamel, PRL 89, 043001
Acknowledgement

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jo Stöhr</td>
<td>SLAC</td>
</tr>
<tr>
<td>Diling Zhu</td>
<td></td>
</tr>
<tr>
<td>Benny Wu</td>
<td></td>
</tr>
<tr>
<td>Catherine Graves</td>
<td></td>
</tr>
<tr>
<td>Tianhan Wang</td>
<td></td>
</tr>
<tr>
<td>Bill Schlotter</td>
<td></td>
</tr>
<tr>
<td>Joshua Turner</td>
<td></td>
</tr>
<tr>
<td>Garth Williams</td>
<td></td>
</tr>
<tr>
<td>Greg Hays</td>
<td></td>
</tr>
<tr>
<td>Phillipe Hering</td>
<td></td>
</tr>
<tr>
<td>Marc Messerschmidt</td>
<td></td>
</tr>
<tr>
<td>Bob Nagler</td>
<td></td>
</tr>
<tr>
<td>Hermann Duerr</td>
<td></td>
</tr>
<tr>
<td>Phil Heimann</td>
<td>ALS</td>
</tr>
<tr>
<td>Jan Luning</td>
<td>U Paris</td>
</tr>
<tr>
<td>Gerhard Gruebel</td>
<td>DESY</td>
</tr>
<tr>
<td>Leonard Mueller</td>
<td></td>
</tr>
<tr>
<td>Chrisitan Gutt</td>
<td></td>
</tr>
<tr>
<td>Richard Mattana</td>
<td>THALES</td>
</tr>
<tr>
<td>Nicolas Jaouen</td>
<td>SOLEIL</td>
</tr>
<tr>
<td>Oleg Kruppin</td>
<td>X-FEL</td>
</tr>
<tr>
<td>Horia Popescu</td>
<td></td>
</tr>
<tr>
<td>Eric Beaurepaire</td>
<td>IPCMS</td>
</tr>
<tr>
<td>Boris Vodungbo</td>
<td></td>
</tr>
<tr>
<td>Valrie Halte</td>
<td></td>
</tr>
<tr>
<td>V. Lopez-Flores</td>
<td></td>
</tr>
<tr>
<td>Christine Boeglin</td>
<td></td>
</tr>
<tr>
<td>Jean Yves Bigot</td>
<td></td>
</tr>
<tr>
<td>Stefan Eisebitt</td>
<td>TU Berlin</td>
</tr>
<tr>
<td>Jyoti Mohanty</td>
<td></td>
</tr>
<tr>
<td>Stefan Heinze</td>
<td></td>
</tr>
<tr>
<td>Torbjörn Rander</td>
<td></td>
</tr>
<tr>
<td>Stefan Heinze</td>
<td></td>
</tr>
<tr>
<td>Yves Acremann</td>
<td>ETH Zurich</td>
</tr>
<tr>
<td>Anna Barszcak Sardinha</td>
<td>ENSTRA</td>
</tr>
<tr>
<td>Franck Fortuna</td>
<td>CNRS</td>
</tr>
<tr>
<td>Horia Popescu</td>
<td></td>
</tr>
<tr>
<td>Phil Heimann</td>
<td></td>
</tr>
</tbody>
</table>
SCS team

Robert Carley
SCS Instrument Scientist

Jan Torben Delitz
SCS Instrument Engineer

Loic Le Guyader
Peter Paul Ewald fellowship

Justine Schlappa
SCS Instrument Scientist

Alexander Yaroslavtsev
SCS Staff Scientist

Carsten Broers
SCS Technician

Manuel Izquierdo
SCS Instrument Scientist

Komal Khandelwal
SCS Student assistant

Alexander Sorin
SCS Student assistant

Carsten Broers
SCS Technician

Manuel Izquierdo
SCS Instrument Scientist

Komal Khandelwal
SCS Student assistant

Alexander Sorin
SCS Student assistant
Part 1 (Tuesday)
- Spectroscopy and Microscopy
- XFEL and SASE radiation
- Stimulated emission
- nonlinear response at x-ray energies

Part 2 (Wednesday)
- Nonlinear absorption
- Three-wave mixing
- Four-wave mixing
END