Slide 1 of 33

Using RASSCF calculations for Computing Resonant Inelastic X-Ray Scattering (RIXS)

Michael Odelius

Stockholm University

odelius@fysik.su.se

Department of Physics

Slide 2 of 33

The QCMD group at Fysikum, Stockholm University

Time

Carl Tryggers StipendieStiftelse

Members

Jesper Norell

Emelie Ertan

http://www.fysik.su.se/~odelius/qcmd/

Dr. Ida Josefsson

Stockholm University

Slide 3 of 33

Outline

	Techniques	QC MD RASSCF	
	H ₂ O(g)	O 1s RIXS	
	Acetone(I)	O 1s RIXS	
Not the second sec	2-MP(aq)	N 1s RIXS(t)	
	Ni ²⁺ (aq)	Ni 2p RIXS	
	[Fe(CN) ₆] ³⁻ (aq)	Fe 2p RIXS	
	Fe(CO) ₅ (etoh)	Fe 2p RIXS(t)	
		SNA + SNA	
		Stockholm University	

.

Hartree-Fock

Singlet determinant Independent particle or Mean-field approximation

$$\Psi_{HF} = det | \phi_1, \phi_2, \phi_N | =$$

Momentary e⁻ - e⁻ correlation missing!

Singlet determinant

Correlation in ${\mathscr H}$

Post-HF

Multi-determinant

Wave function correlated

 	_		
 		—	
 _	_	▲ ↓	
 ▲ ↓		_	_
 	▲ ↓		

Molecular dynamics

F=ma
$$F_{-\partial V/\partial r_{-}}$$

$$i\hbar\frac{\partial}{\partial t}\Phi(\{\boldsymbol{r}_i\},\{\boldsymbol{R}_I\};t)=H\Phi(\{\boldsymbol{r}_i\},\{\boldsymbol{R}_I\};t)$$

Tool box

Molecular dynamics simulations

Solution dynamics – CPMD/Cp2k Quantum dynamics - Victor+Faris

Electronic structure and Spectrum calculations

Density functional theory Plane-wave basis - CPMD Local Gaussian basis - Cp2k Post-Hartree-Fock Relativistic RASSCF - MOLCAS RASPT2 Spin-Orbit Coupling

Choice of method

RAS1

Quantum chemistry of excited states:

Restricted/Complete Active Space SCF RASSCF

Static correlation RASSCF+perturbative PT2 Dynamics correlation

RASPT2

Dissociation Valence excited states Core excited states Scalar Relativistic Multiplet effects Spin-orbit coupling

Slide 7 of 33

Case study: H₂O(g)

$$I(\omega,\omega') \propto \sum_{f} \left| \sum_{c} \frac{\langle f | \hat{Q} | c \rangle \langle c | \hat{V} | 0 \rangle}{\hbar \omega - (E_c - E_0) - i \Gamma_c} \right|^2 \cdot \frac{\Gamma_f / \pi}{(\hbar \omega' - \hbar \omega + (E_f - E_0))^2 + \Gamma_f^2}.$$

Resonant inelastic X-ray scattering RIXS

Core- (or valence-) ionized states: $|\Psi_{e}\rangle = |\begin{array}{ccc} 1a_{1}^{1} 2a_{1}^{2} & 1b_{2}^{2} 3a_{1}^{2} 1b_{1}^{2} & 4a_{1}^{0} 2b_{1}^{0} \rangle$

Core-excited state:

$$|\Psi_{e}\rangle = |1a_{1}^{1}2a_{1}^{2} 1b_{2}^{2}3a_{1}^{2}1b_{1}^{2} 4a_{1}^{1}2b_{1}^{0}\rangle$$

Valence-excited state:

$$|\Psi_{e}\rangle = |1a_{1}^{2}2a_{1}^{2}1b_{2}^{1}3a_{1}^{2}1b_{1}^{2} - 4a_{1}^{1}2b_{1}^{0}\rangle$$

Ground state:

 $|\Psi_{e}\rangle = |1a_{1}^{2}2a_{1}^{2}1b_{2}^{2}3a_{1}^{2}1b_{1}^{2} 4a_{1}^{0}2b_{1}^{0}\rangle$

Case study: H₂O(g)

Resonant inelastic X-ray scattering **RIXS**

Core- (or valence-) ionized states: $|\Psi_{e}\rangle = |\begin{array}{ccc} 1a_{1}^{1} 2a_{1}^{2} & 1b_{2}^{2} 3a_{1}^{2} 1b_{1}^{2} & 4a_{1}^{0} 2b_{1}^{0} \rangle$

Core-excited state:

$$|\Psi_{e}\rangle = |1a_{1}^{1}2a_{1}^{2} 1b_{2}^{2}3a_{1}^{2}1b_{1}^{2} 4a_{1}^{1}2b_{1}^{0}\rangle$$

Valence-excited state:

$$|\Psi_{e}\rangle = |1a_{1}^{2}2a_{1}^{2}1b_{2}^{1}3a_{1}^{2}1b_{1}^{2} 4a_{1}^{1}2b_{1}^{0}\rangle$$

Ground state:

 $|\Psi_{e}\rangle = |1a_{1}^{2}2a_{1}^{2}1b_{2}^{2}3a_{1}^{2}1b_{1}^{2}4a_{1}^{0}2b_{1}^{0}\rangle$

Case study: H₂O(g)

Resonant inelastic X-ray scattering **RIXS**

Core- (or valence-) ionized states: $|\Psi_{e}\rangle = |\begin{array}{ccc} 1a_{1}^{1} 2a_{1}^{2} & 1b_{2}^{2} 3a_{1}^{2} 1b_{1}^{2} & 4a_{1}^{0} 2b_{1}^{0} \rangle$

Core-excited state:

$$|\Psi_{e}\rangle = |1a_{1}^{1}2a_{1}^{2} 1b_{2}^{2}3a_{1}^{2}1b_{1}^{2} 4a_{1}^{1}2b_{1}^{0}\rangle$$

Valence-excited state:

$$|\Psi_{e}\rangle = |1a_{1}^{2}2a_{1}^{2}1b_{2}^{1}3a_{1}^{2}1b_{1}^{2} 4a_{1}^{1}2b_{1}^{0}\rangle$$

Ground state:

 $|\Psi_{e}\rangle = |1a_{1}^{2}2a_{1}^{2}1b_{2}^{2}3a_{1}^{2}1b_{1}^{2} 4a_{1}^{0}2b_{1}^{0}\rangle$

Slide 10 of 33

Resonant inelastic X-ray Scattering of H₂O(g)

Slide 11 of 33

Multi-configurational SCF calculations of H₂O(g)

تربی الج Stockholm University

Slide 12 of 33

Resonant inelastic X-ray Scattering of H₂O(g)

Slide 13 of 33

Electronic States → Molecular Orbitals

RIXS H₂O(g)

Slide 14 of 33

Resonant X-ray emission of H₂O(g)

Information content in RIXS

Core-excited state dynamics

Slide 16 of 33

Core-excited state dynamics in $H_2O(g)$

Slide 17 of 33

Stockholm

University

Vibrationally resolved RIXS

Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

Simon Schreck^{1,2,†}, Annette Pietzsch¹, Brian Kennedy¹, Conny Såthe³, Piter S. Miedema¹, Simone Techert^{4,5,6}, Vladimir N. Strocov⁷, Thorsten Schmitt⁷, Franz Hennies³, Jan-Erik Rubensson⁸ & Alexander Föhlisch^{1,2}

SCIENTIFIC REPORTS | 6:20054 | DOI: 10.1038/srep20054

Slide 18 of 33

Vibrationally resolved RIXS
at the oxygen K-edge(O1s) of liquid acetoneSpectral features in RIXS
at the XAS $|O1s^{-1}\pi^1>$ resonance

Y.-P. Sun, F. Hennies, A. Pietzsch, B. Kennedy, T. Schmitt, V. N. Strocov, J. Andersson, M. Berglund, J.-E. Rubensson, K. Aidas, F. Gel'mukhanov, M. Odelius, and A. Föhlisch

Slide 19 of 33

Vibrationally resolved RIXS at the oxygen K-edge(O1s) of liquid acetone

Slide 20 of 33

Vibrationally resolved RIXS at the oxygen K-edge(O1s) of liquid acetone

Spectral features in RIXS at the XAS $|01s^{-1}\pi^{1}\rangle$ resonance

Slide 22 of 33

Photochemistry with time-resolved RIXS

Excited state proton transfer in 2-Mercaptopyridine

What can learn about ESPT from time-resolved UV-pump RIXS-probe spectroscopy?

Is the protontransfer in the core-excited state a limiting issue?

How is the solvent involved?

Slide 23 of 33

L-edge X-ray Spectroscopy of Transition metal complexes

Slide 24 of 33

Stockholm

University

L-edge X-ray Spectroscopy of Transition metal complexes

"jj-compling in core" "LS coupling in valance" Coupling between core & valence

I. Josefsson et al J. Phys. Chem. Lett. 3:3565-3570, 2012

Slide 25 of 33

L-edge X-ray Spectroscopy of Transition metal complexes

I. Josefsson et al J. Phys. Chem. Lett. 3:3565–3570, 2012 K. Kunnus et al. J. Phys. Chem. B 2013, 117, 16512–16521

Slide 26 of 33

L-edge X-ray Spectroscopy of Transition metal complexes

RASPT2 Jesper Norell Marcus Lundberg Rahul V. Pinjari Mickael G. Delcey Meiyuan Guo

RIXS Kristjan Kunnus Simon Schreck

Philippe Wernet Kelly Gaffney Alexander Föhlisch

Slide 27 of 33

L-edge X-ray Spectroscopy of Transition metal complexes

Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states

R. V. Pinjari, M. G. Delcey, M. Guo, M. Odelius, and M. Lundberg, J. Chem. Phys. 141, 124116 (2014).

Slide 28 of 33

Stockholm

University

L-edge X-ray Spectroscopy of Transition metal complexes

Energy

704 706

708 710 712 714

Incident energy (eV)

716

718

 $[Fe(CN)_{6}]^{3-}(aq)$

 $[Fe(CN)_{6}]^{4}(aq)$

Viewing the Valence Electronic Structure of Ferric and Ferrous Hexacyanide in Solution from the Fe and Cyanide Perspectives

Kristjan Kunnus,^{*,†,‡,§} Wenkai Zhang,^{||,⊥} Mickaël G. Delcey,[#] Rahul V. Pinjari,[#] Piter S. Miedema,[†] Simon Schreck,^{†,‡,∇} Wilson Quevedo,[†] Henning Schröder,^{†,‡} Alexander Föhlisch,^{†,‡} Kelly J. Gaffney,^{||} Marcus Lundberg,[#] Michael Odelius,^O and Philippe Wernet^{*,†}

Photo-dissociation of FeCO₅ in ethanol solution

HZB: Philippe Wernet, Martin Beye, Simon Schreck, Christian Weniger, Christian Kalus, Kerstin Kalus, Edlira Suljoti, Alexander Föhlisch

MPI-BPC: Ivan Rajkovic, Sebastian Grübel,Wilson Quevedo, Mirko Scholz,Simone TechertMAX-lab: Brian Kennedy, Franz Hennies

SSRL/SLAC: Dennis Nordlund

PULSE/SLAC: Kelly Gaffney, Robert Hartsock, Wenkai Zhang **LCLS/SLAC:** Bill Schlotter, Josh Turner

Utrecht University: Frank de Groot (Theory)

Stockholm Uni.: Ida Josefsson, M. Odelius (Theory)

Time-resolved Fe L-edge RIXS

Slide 30 of 33

RASSCF calculations of Fe(CO)₅

Ph. Wernet, K. Kunnus, I. Josefsson, I. Rajkovic, W. Quevedo, M. Beye, S. Schreck, S. Grübel,M. Scholz, D. Nordlund, W. Zhang, R. W. Hartsock, W. F. Schlotter, J. J. Turner, B. Kennedy, F. Hennies,F. M. F. de Groot, K. J. Gaffney, S. Techert, M. Odelius, and A. Föhlisch. Nature 520, 78–81 [2015]

Slide 31 of 33

Dissecting the information in time-resolved Iron L-edge RIXS

MOLCAS (RASSCF) RAS1=3, RAS2=4,

Possible reaction investigated with a ~80 RIXSsimulations **Giving fingerprints** of various reaction intermediates and

Stockholm

University

Slide 32 of 33

Solvent complexation and Intersystem crossing Competing pathways in the photodissociation of Fe(CO)₅

Ph. Wernet, K. Kunnus, I. Josefsson, I. Rajkovic, W. Quevedo, M. Beye, S. Schreck, S. Grübel,M. Scholz, D. Nordlund, W. Zhang, R. W. Hartsock, W. F. Schlotter, J. J. Turner, B. Kennedy, F. Hennies,F. M. F. de Groot, K. J. Gaffney, S. Techert, M. Odelius, and A. Föhlisch. Nature 520, 78–81 [2015]

Slide 33 of 33

Stockholm

University

Spectroscopy of transient excited-states: Challenges & Opportunities for Theory.

High-level Quantum Chemistry Ab initio Molecular Dynamics Quantum Dynamics

