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Overview

The kinetic equations.

Numerics of the particle-in-cell method.

Laser-plasma experiments.

Reproducing the experimental findings.
A ‘textbook’ MHD shock in 1D.

Expansion of a radial blast shell into a magnetized plasma.

Summary.



Maxwell’s equations

The evolution of the electromagnetic fields is described by :
Faraday’s law, Ampere’s law and Gauss’ law.

d/0t B= Vx F 10£00/3t F= 7x B—p0 ]

V- £=p/c0 V- =0

Gauss’ law of electrostatics is related to Ampere’s law:

Continuity equation: €09/t V- £=3/3tp=—V/ = I"(3/0t £0£+/)=0

Electric field update: solve Ampere’s law and make sure Gauss’ law is fulfilled.
Magnetic field update: solve Faraday’s law and make sure I7-B=0 is fulfilled.



Charge and current densities

The plasma enters through the charge density p and the current density J.

Both are functions of space and time in a magneto-fluid: p(x,t) and J(x,t).

If collisions are absent in the plasma, then the particles change their velocity
only via electromagnetic fields: velocity becomes an independent variable.

Species i is described by a phase space density distribution f(x,v,t).

We obtain from it the charge- and current densities as:
p{xt)=q. [ f(xv,t) d®v and J(x,t)=q. [ v f(x,v,t) d°v (q, is the particle charge).
The total charge is p =} p, and the total currentisJ =}, J..



Effects of electromagnetic field on plasma

The charge- and current density of the plasma drives electromagnetic fields.

The electromagnetic fields act back on the plasma.

The phase space density is preserved in a Lagrangian frame if there is no ionization and
recombination of charges: (d/dt) f. (x(t), v(t), t) = O.

We obtain the evolution equation for the phase space density of speciesiin a Eulerian fram

d/ot fi(x,v,t)+dx/dt Vii(x,v,t)+qgi/mi (E+vxB) Vvfi(xv,t)=0.

We need to find suitable numerical schemes for updating the phase space density
distribution and the fields.



Numerical scheme: E, Band J.

We solve the field equations in the Eulerian frame: )
1000/t F= Vx B —u0 / 3/0t B= Vx E L

(t+1)Az - - -

We place E, B and J on a numerical grid.

* Most PIC simulations employ uniform spacing - TB
for Ax, Ay, Az and for At. |

* Maxwell’s equations can be solved explicitely IR B L kA
with a finite difference time domain (FDTD) | !

scheme. jAy (j+1)Ay

* Eis defined at integer time steps. Yee |lattice for a PIC code

* B and J at half-integer time steps.



Numerical scheme: f.(x,vt)

Vlasov equation: /9t fm(x,v,t)+dx/dt Vim(x,v,t)+gm/mm (E+vx B)- Vvfm(xv,t)=0.

1

pproximate fm(x, V,Z‘) by N, computational 5
articles (CPs). > 09
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ample the shape function on the grid as: Sy, =
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s initialized with a random number generator with the probability density function f,_(x,v,t).



Coupling fields and computational particles

Faraday’s and Ampere’s law evolve the electric field and the magnetic field on a grid with
the help of the total current density J of the plasma.

The electric field E is known at integer time steps nA,.
The magnetic field B and the current density J are known at times (n+1/2)A..
It makes sense to update particle positions and velocities at different times.

The current density J is obtained by summing up the current contributions of all CPs = we
define particle velocities at times (n+1/2)A,.

We define particle positions at integer time steps nA,.



Esirkepov’s charge-conserving scheme

1e scheme proposed by T. Zh. Esirkepov, |
omputer Physics Communications 135, 144 E' = (E} 100012 Ervio a2 Eivrjo g,

'001) fulfills the continuity equation. +1/2 2 n+1/2
) ¥y eq B’ /2 (Bl+l/2//\ B J+1/2.k Bl//\+l/’7)

1e charge is defined in the center of the cell.

1e currents and fields are specified around it

. C L. ) i . pl = /);I+1/2.j+1/2.k+1/z~
milarly to the distribution in the Yee lattice.

n+1/2 __ 1 2 3
J - (‘-7i.j-|—l/2.k+l/2‘- i+1/2,j.k+1/2° ‘-7i—+-1/2.j+1/2.A

uses gradient operators with forward and
ackward schemes.

4o, Jivvjk — Jijk Jij+r.k — fijk Jijkse1 — Jijk
VT fiik= ” ._

dx " dy " dz
. fijk — ficrjk Jijk — Jij=1. K f{ ik = Jijk=1
V7« fijk= _ ., _ .
dx dy dz



Esirkepov’s charge-conserving scheme

n—+1 n

 Equations are given in normalized E" —E
units (see paper). A1

Brt+1/2 _gn—1/2

— vt x Bn-i-l/Z . jn—l—l/2

* The electric field, the charge and

— n
particle positions are known at dt =—V xE,
integer time steps. vt.E" = o

* The magnetic field, the current and v—.B'"T1/2
particle velocities are known at half- -
integer time steps.
n+1/2 n—1/2 y
 The scheme works if the Yo = ZUa 5 Ge Me (En (x.1) + Ye o gr (x
computational particles’ shape dt My € Ve
function is a B-spline. X+l u/ /2
dr  _ntlj2’

o

Vo = (14 (u)?) 2.



Experimental setup

The interaction beam ablates a target, thereby
generating a dense blast shell of plasma.

Radiation from this plasma ionizes residual gas
in the vessel.

Shocks form where the blast shell collides with
the ambient plasma.

The CPA beam generates fast protons, which
cross the plasma and hit the RCF stack.

The probing protons are deflected by
electromagnetic fields, which yields a spatially
varying irradiation of the RCF films.

The electromagnetic field distribution can be
reconstructed from the irradiation pattern.
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Sketch from G. Sarri et al, New J. Phys. 12, 045006, 2(



EX p e r| me nta | resy |t Image provided by D. Doria, G. Sarri, H. Ahmed anc

M. Borghesi (CPP, Queens University Belfast, UK)

 The blast shell was launched at the
bottom and moved up.

* The magnetic field lines point
horizontally.

* The plasma 6=1/3.5.
* The ambient plasma frequency w =10%

* The electron gyro-frequency w_=10"".

 We observe a turbulent wave field and a
flat front at tw, =10° or tw ~10°.

* The oscillations have a wave length of the PIC Simulations:
order of the electron thermal gyro-radius.

1D simulation along horizontal direction.
2D simulation of radially expanding blast shell.



Initial conditions for 1D simulation

D simulation box with length 0.75 m.
eflecting boundary conditions.
lectron density n, = 2.75 -10**cm’3
lectron temperature T, =2 keV

natial density / temperature profiles are
yown to the right.

spatially uniform magnetic field B,,=0.85T
Is the simulation box.

lectron thermal gyro-radius r, = 1.25 104 m

ns : fully ionized nitrogen with temperature
,/12.5 and density that yields charge
eutrality.
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Early time

We track the blast shell expansion for 1.1 ns. 15 —

The 10-logarithmic ion phase space density 10

distributions are compared for >"

(a) B,,=0and (b) B,,=0.85T. 5 :

Both shocks look similar. The magnetized one 0

is slower. 4.4 46 o r:'he) 5 5.2

lon acoustic speed in (a): 2.2 - 10° m/s.

Fast magneto-sonic speed in (b) : 8.2 - 10° m/s. 19 —

The latter speed exceeds the shock speed : 0

(b) can thus not be a fast MHD shock. . i J

Observation : the magnetic field was not in an OW

equilibrium. a4 46 48 5 5.2
() X (mm)

From: Particle-in-cell simulation study of a lower-hybrid shock :
Dieckmann, M. E. et al Phys. Plasmas, 23, 062111 (2016).



The shock evolution

/e keep all plasma parameters unchanged. Lt
/e evolve the expansion over 227 ns (14 Z 10
illion time steps). y
ime is given in w, ! = 0.4 ns. >
1, - lower-hybrid frequency. .y S .
pace unit:r,_=1.25-10%m -1000 500 0 500 1000 1500
T ge ’ 8
)n density is normalized to that of the Ll ]
ilute ions and 8 is the largest displayed e | | , ]
alue ) -1000 -500 0 500 1000 1500
: . :
lagnetic field is normalized to 0.85 T. @ 1
< 05




The wave front

">+ Panel (a) shows the evolution of B,(x,t) in
e reference frame of the downstream fram

1.1

1 e X*and t* are normalized to the electron
0o thermal gyro-radius and lower-hybrid
frequency downstream.

e Panel (b) is the frequency spectrum as a
2 function of the position.

2 * Panel (c) is the dispersion relation of the |
frequency waves downstream compares
dispersion relation of the fast magneto-s«
mode to the coupled FMS/LH branch.




Initial condition for 2D simulation

Periodic boundary conditions.
L,=6.4cmand L, =12.8cm.
Total of 3:10° CPs.

Magnetic field points along y.

Ambient plasma temperature 2keV
(electrons) and 160 eV (nitrogen).

Dense plasma confined by circle 1.
Density inside 1 is 10 times higher.
Electrons inside 1 is 3 times hotter.

Statistical resolution of ions changes
across circle 2.
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The shock evolution

Jpper panel: magnetic pressure in

: 10
Inits of electron thermal pressure.

X (mm)

ower panel: ion density in units of
imbient ion density (clamped to
naximum value 5).
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Summary

| have discussed how we derived the kinetic equations for plasma.
| have summarized Esirkepov’s numerical scheme.
Experimental results from my collaborators at QUB were presented.

| have shown how | used 1D/2D PIC simulations to identify the observed structures.



