

Particle acceleration at collisionless shocks: quasi-linear and hybrid-Vlasov simulations

<u>**R. Vainio, A. Afanasiev,**</u> University of Turku, Finland

M. Battarbee, U. Ganse, Y. Kempf, M. Palmroth* University of Helsinki, Finland

S. von Alfthan

CSC – IT Centre for Science, Espoo, Finland

*also at Finnish Meteorological Institute

Shock accelerated ions in solar eruptions

Figure: D. Lario

How do shocks accelerate particles? Diffusive shock acceleration

Repeated shock crossings produce a power-law in momentum

How do shocks accelerate particles? Diffusive shock acceleration

lons at supercritical shocks ($M_A > 3$, r > 2.5)

Giacalone (2102)

 18 cases in ACE shock lists, <u>all</u> have ion acceleration

Diffusive shock acceleration

Earth's bow shock

SIMULATION MODELLING

Monte Carlo simulations

SOLar Particle Acceleration in Coronal Shocks (SOLPACS) code

- traces energetic protons upstream of a parallel shock in the GC approximation
- computes interactions of particles with slab-mode Alfvénic turbulence self-consistently based on quasi-linear theory
- uses the quasi-linear resonance condition $k_{\rm res} = \Omega/(v\mu)$
- does local simulations (upstream plasma density and mean magnetic field are taken constant)

Interplanetary shock simulation using SOLPACS

 $\epsilon_{inj} = 10^{-3}$

Diffusive shock acceleration

Scaling of intensity at the shock as a function of injection strength

Results of quasi-linear simulations of coronal shocks (Afanasiev et al. 2015)

Hybrid Vlasov simulation of an interplanetary shock (HT frame)

Upstream velocity distributions

Fully kinetic ion physics <u>crucial</u> for injection

Comparison of SOLPACS to a Vlasiator simulation

-30

If injection is obtained from a local kinetic simulation, can we model the acceleration at higher energies with DSA?

Run setup

- 5-D run (XY ecliptic plane, 3-D velocity space)
- Resolution: 227 km (ordinary space) 30 km s⁻¹ (velocity space)
- Inner magnetospheric boundary at 5 RE
- IMF: magnitude 5 nT, radial (cone angle 5°)
- Solar wind velocity: 600 km s⁻¹
- Density: 3.3 cm⁻³
- Maxwellian velocity distribution of SW protons with T = 0.5 MK.

20

30

X [Re]

40

50

10

Ó

Vlasiator simulation

Magnetic ULF foreshock at t = 450 s

- Quasi-parallel shock (clock angle 5 deg.)
- Incident solar wind parameters:
 plasma density 3.3 cm⁻³
 magnetic field 5 nT
 solar wind speed 600 km/s

Wave power spectrum in Vlasiator

Wave power spectra in SOLPACS

Initial wave power spectrum:

- has a power-law form
- Its level is determined by the mean free path λ_0 of 100 keV protons
- both right-handed and left-handed waves are equally presented
- The evolution is governed by λ₀ and the proton injection efficiency ε

Note that right-handed polarization dominates!

Detailed comparison of the spectra

The power spectra have comparable values ($\sim 10^{-18} \text{ T}^2/\text{Hz}$) at the beam-resonant frequency $f_{\rm b} \sim 4.2 \cdot 10^{-2} \text{ Hz}$. However, there is a difference in the spectral shape. Why?

Future: beyond quasi-linear physics

Rippled shock: shock-normal angle "random variable"; affects injection Coherent compressional waves driven by reflected ion beam (unexplored transport conditions)

B

Christmas tree structure

Vlasiator foreshock is not filled with parallel propagating Alfvén waves even in a quasi-radial IMF. Instead, waves often get more and more oblique as the simulation proceeds.

What is the reason for the obliquity? Refraction?

What is the dispersion relation of the beam-driven waves?

Phase speed in a vertical slit

Phase speed of beam-driven waves

Denser and faster parts of the beam produce a faster phase speed of the beam-driven waves

Note: a counter-propagating wave with phase speed \approx fluid speed —> strong effect on DSA!

Future: beyond quasi-linear physics

Very turbulent downstream (unexplored transport conditions)

> Rippled shock (shock-normal angle "random variable"; especially injection)

Scale coupling

Coherent compressional waves driven by reflected ion beam (unexplored transport conditions)

B

Future: beyond quasi-linear physics

Very turbulent downstream (unexplored transport conditions)

Scale coupling

But can we really use kinetic codes?

Rippled shock (shock-normal angle "random variable"; especially injection) Coherent compressional waves driven by reflected ion beam (unexplored transport conditions)

B

Distribution of protons in the foreshock

Small scales need to be resolved throughout the system!

Bell's steady-state theory (1-D):
$$I(x,p) \propto \frac{x_0}{x+x_0}, \ x_0 = x_0(p)$$

Conclusions

- Diffusive shock acceleration can accelerate particles to high energies in solar wind
 - Super-criticality guarantees ion acceleration
 - − Quasi-linear model works reasonably well at moderately strong ($M_A \approx 3-5$) quasi-parallel and oblique shocks in comparison with observations
- Injection efficiency in the acceleration process determines not only the number of accelerated particles but also the maximum energy obtained from the process
 - The higher the particle intensity, the higher the intensity of scattering waves, and the higher the achieved energy in a given time
- Hybrid-Vlasov simulations (and observations) yield a picture of a turbulent environment
 - Injection is determined by local shock structure and its interactions with upstream-generated structures
 - Foreshock wave properties differ from Alfvénic —> DSA affected
- Bow shock is a much more complex system than (planar) IP shocks
 - Scales and physical processes couple to each other
 - Downstream differs from the DSA picture of homogeneous turbulence
- Huge variations of relevant scales in a space-filling manner pose great challenges to the kinetic approach
 - Sub-grid-scale modeling may still be needed

SPARES

Basic Mechanisms

 \mathbf{B}_1

u_{n1}

E_t

V_n

Diffusive Shock Acceleration Electrons and ions

Included in Vlasiator and SOLPACS

Shock Drift Acceleration Electrons and ions

Included in Vlasiator and approximately in SOLPACS

E_n

φ

n

 \mathbf{B}_1

 u_{n1}

E_t

Desai et al. (2011)

Spectral density of fluctuations

Desai et al. (2011)