
CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus

Vlasiator - enabling large scale
hybrid-Vlasov simulations
Sebastian von Alfthan(1), Urs Ganse(2), Yann Pfau-Kempf (2), Minna Palmroth(2)

1) CSC- IT Center for Science
2) University of Helsinki

• Introduction
• Hybrid Vlasov &Computational challenges
• Vlasiator

o 6D sparse grid
o Conservative Semi Lagranging Vlasov solver
o Performance

• KNL optimizations & experiences on KNL
• Recent developments

Outline

2

3

• Vlasiator (vlasiator.fmi.fi)
simulates plasma in near-earth
space

• Hybrid-Vlasov description
o Electrons: Charge-neutralizing fluid
o Ions: 6D distribution function
o Supports multiple ion species
o Multi-temperature ion physics
o Noise-free

• Science
o Simulations of Earth’s

magnetoshpere
o Also shocks, and possibly other

settings

Foreshock

Shocked
plasma in
magneto-
sheath

Global modelling techniques

4

Global modelling techniques

5

• 2013
• PRACE access, 30 MCPUh on Hermit (Cray XE6)
• European suprcomputing infrastructure:

http://www.prace-ri.eu/
• 5D simulations in XY plane

• 2014
• Pilot usage of Sisu (Cray XC40)
• Kinetic scale 5D simulation in XY and XZ plane

• 2015
• PRACE : 24 MCPUh on Hornet (Cray XC40)
• CSC: 12 MCPUh grand challenge

• 2017-18
• PRACE: 1.1 MNodeh Marconi (KNL)

Recent compute campaigns

6

Ecliptic runs

7

https://docs.google.com/file/d/0BzF91lVwnx6NWjVqTVZmd0tPOFk/preview

Polar runs

8

https://docs.google.com/file/d/0BzF91lVwnx6NV2I4bWtlQ1QtVDg/preview

Hybrid Vlasov

9

• Protons: 6D distribution function
that advects according to the Vlasov
equation:

• From f one can compute density,
temperature, ...

● Hybrid: electrons are a massless (ideal)
MHD fluid, following Maxwell’s equations

● Closed by an Ohm’s law

• Size of distribution function
o Spatial resolution

o Ion-kinetic physics require sufficient real space resolution to be resolved,
200 - 300 km

o Typically 2D simulations, order of 2000 x 2000 spatial cells
o Velocity resolution

o Need to resolve & limit diffusion, for current solvers 30 km/s
o +- 2000 - 3000 km/s (at least) in each dimension.
o Dense scheme up to 8M phase space cells per spatial cell, sparse

scheme gives max average 200k phase space cells
o In total order of 1012 phase space cells (1015 with dense implementation)
o Both a challenge in terms of CPUh, as well as memory consumption

10

Computational challenge

• Time
o Strong B close to Earth inner boundary => Large acceleration

and high wave velocities (whistler, Alfvén) leading to short
timesteps

Targets

1. Minimize number of phase space cells
2. Accurate solvers with large dt
3. Efficient implementation – scalability and

computational throughput

11

Computational challenge

Vlasov propagation

12

Numerical method:
discretization

• Proton distribution function discretized
onto 6D cartesian mesh as volume average

• 3D real space mesh (x,y,z)
o MPI parallel DCCRG :github.com/fmihpc/dccrg)
o Each cell has a 3D velocity mesh

• 3D velocity space meshes (vx, vy, vz)
o Comprises blocks of 4 x 4 x 4 phase space cells
o Sparse - only blocks with content exist
o Single precision in production runs

13
Sparse velocity space mesh

6D cartesian mesh: 3D real space + 3D velocity
space

9.6.2015 Finnish Meteorological Institute14

• Vlasov solver
o This is where ~90% of time is spent
o Real space propagation and velocity space propagation split

with Strang splitting in two 3D propagations

o 2011 – 2014: 2nd order accurate Finite Volume Method
approach (Langseth & Leveque 2000).

o 5th order accurate conservative Semi-Lagrangian scheme
(SLICE-3D Zerroukat 2012)

Propagation

Vlasov propagation

• Propagation based on Slice3D algorithm
• Semilagrangian method, split in 3 1D propagations

1. Compute how the grid moves over one timestep. This
is a euclidian transformation (rotation & translation)

2. For z,x,y sweep map along dimension
a. Compute intersections of new grid with the original
b. Compute 1D polynomial (4th order) reconstruction for each cell
c. Map the value to the departure grid by integrating the reconstructed polynomial between the

intersection points

15

• Vlasiator supports1D reconstructions
• PLM: Piecewise Linear Method

• PPM: Piecewice Parabolic Method

• PQM: Piecewice Quartic Method

16

1D reconstructions

• PQM (White et al. 2008)
• Piecewice polynomials of order 4

• Five constraints used to determine a
• 1. Conservative, integral over cell equals mass
• 2 - 5: At cell edges the Rj matches edge values and slopes

• Edge values and slopes estimated with 8th and 6th
order explicit estimates – compact stencil

• Limited to make sure the reconstruction is
bounded and monotonic

17

1D reconstructions

Singel Maxwellian with T=500kK
Temperature after 10 gyroperiods, in total 3600 steps

 (km/s)18

Diffusion

• Not CFL limited in velocity space
o we typically set max dt to 5% of the gyroperiod

• Order
o 1D splits makes it easier to add higher order reconstructions
o PQM is significantly better than PPM, especially in velocity space
o In ordinary space we still use PPM due to more compact stencils

• Performance
o It is easy to vectorize efficiently due to the 1D nature
o Algorithm maps very well to GPUs (work ongoing)
o Solves 13 Mcells/s per 3D propagator (Haswell, 2.6GHz)

19

Vlasov propagation

Parallelization on three levels

1. Across nodes on clusters & supercomputers - MPI
o Domain decomposition of ordinary space (r)
o Implemented by DCCRG library (https://github.com/fmihpc/dccrg)
o Frequent load balancing due to sparse velocity mesh (RCB, Zoltan)

2. Across cores on nodes – OpenMP
o Propagation in velocity space threaded over spatial space
o Propagation in spatial space threaded over velocity space

3. Across core – Vectorization
o Planes in 4 x 4 x 4 velocity blocks perpendicular to map dimension vectorized
o Vlasov solvers written using templated vector data type:

http://www.agner.org/optimize/#vectorclass
o SSE2, AVX, AVX-512 supported (4, 8 or 16 single precision floats)
o Main data arrays aligned

20

Vectorization example

21

9.6.2015 Finnish Meteorological Institute22

Density (1/m^3) Computational load MPI computational
domains

MPI parallelization

9.6.2015 Finnish Meteorological Institute23

Strong scaling

Scalability

Fieldsolver

24

9.6.2015 Finnish Meteorological Institute25

• Fieldsolver
o Second-order accurate upwind

constrained transport method
[Londrillo and del Zanna 2004]

o Fieldsolver 2nd order accurate in
time and space (Runge Kutta)

o Divergence of B is preserved - no
cleaning needed

o Field Solver CFL depending on B
(Alfven & Whistler speed) Large B
near the inner boundary,
especially near the poles. FS
Subcycling is required

Propagation

Fieldsolver & load imbalance

• Fieldsolver in principle cheap to compute, but can at scale
take up to 20%
o Requires several communication passes per cycle
o Subcycling - tens of cycles per vlasov propagation
o Bad load imbalance - load balance optimized for Vlasov fluid

• Heterologous domain decomposition
o Field solver on simple, MPI-Cartcomm uniform spatial

decomposition.
o Moments from Vlasov solver get transferred into field solver (1 - to -

N)
o Field quantities get transferred back after FS steps (1 - to - N)

26

KNL optimizations

27

Performance development

28

Intel Xeon Phi - Knights Landing

29

• Compute
o Up to 72 cores in 36 Tiles on 2D

Mesh
o AVX512
o 3+TF DP, 6+TF SP Flops

• Memory
o MCDRAM: 16 GB on-package;

400+GB/s
o DDR

• Integrated Omnipath

Step 1 -porting

30

• KNL test system
o Colfax Ninja development platform with Xeon Phi 7210 (1.3GHz, 64 cores)
o Marconi - 3600 node cluster with 1.4GHz, 68 core KNLs, Omnipath
o Comparisons against one node on Cray XC40 with dual Haswell 12c at 2.6 GHz

• Code uses Agner’s vectorclass
o AVX512 support - 3x performance compared to non-vectorized version

• Allocaters matter
o TBBMalloc gives 30% boost

• 4 threads per core optimal - 2x better than 1
• Cache mode & Quadrant targeted

o Mode used in Marconi
o Working set much larger than MCDRAM

Internal profiling output - KNL

 Timers with more than 1% of total time. Set of identical timers has 16 processes with up to 16 threads each.

--

 | | Count | Process time | Thread imbalances | Workunits |

--

 | Id | Lvl | Grp | Name | Avg | Avg (s) | Time % | Imb % | No | Avg % | Max % | Avg |

--

 | 1 | 1 | | main | 1 | 412.8 | 100 | 0.0006138 | 1 | | | |

 | 2 | 2 | | Initialization | 1 | 194.9 | 47.22 | 0.005305 | 1 | | | |

 | 131 | 2 | | Simulation | 1 | 217.1 | 52.59 | 0.01734 | 1 | | | |

 | 138 | 3 | | Propagate | 10 | 211.5 | 97.4 | 0.04377 | 1 | | | 9.164e+06 Cells/s |

 | 147 | 4 | | Spatial-space | 10 | 73.23 | 34.63 | 0.8482 | 1 | | | 2.646e+07 Cells/s |

 | 202 | 4 | | Velocity-space | 10 | 134.6 | 63.66 | 0.07267 | 1 | | | 1.44e+07 Cells/s |

 | 203 | 5 | | semilag-acc | 10 | 131.5 | 97.65 | 0.06411 | 1 | | | |

 | 205 | 6 | | cell-semilag-acc | 351 | 98.65 | 75.05 | 3.006 | 16 | 1.576 | 1.927 | |

 | 209 | 6 | A | re-adjust blocks | 10 | 29.41 | 22.37 | 16.59 | 1 | | | |

 | 216 | 3 | | compute-timestep | 9 | 4.901 | 2.258 | 0.02068 | 1 | | | |

--

31

● Performance on KNL not competitive out-of-the-box compared to HSW
○ Total Propagation: x 0.67
○ Kernel 1: Velocity space propagation: x 0.67
○ Kernel 2: Real space propagation: x 0.77
○ Initial focus on velocity space propagator - Mapping 47% of total propagation

Kernel 1: Velocity space

• Original
o Threaded over velocity meshes (i.e. real space cells)
o In-place propagation - blocks are sorted along pencils

and each pencil is loaded into a temporary array
o Writes out target values directly into original mesh

• Step 1
o Removed dynamic block creation from loop, is now done in advance for each pencil
o Removed all conditionals from loop
o Loop changed to for loop and target cells are contiguous in memory

• Step 2
o Storage loop now insignificant
o 10% of time was spent in one sqrt call in interpolation filtering, replaced by AVX512ER call

32

Kernel 2: Real space

• Original
o Threaded over blocks in inner loop
o Translation uses separate target grid - the point where memory consumption is highest
o Load block data

o A unordered map maps block id to its actual location in data array
o Block removal and addition keeps the data array packed, and thus the block positions are

randomized over time
o Hardware prefetching does not function well

• Step 3
o Prefetch data

• Step 4 (in progress
o Swap loops over real space cells and blocks and sort list-of-spatial cells into pencils as in

acceleration
o Can do translation in-place, halfs memory consumption

33

Speedup

34

KNL (Intel 17) performance in seconds Haswell (Gnu 6.2.0) performance in seconds

Propagation Velocity map. Spatial map. Propagation Velocity map. Spatial map.

Original 211 98.7 73.2 144 66.0 56.5

Step 1 149 44.5 71.3 121 42.2 56.5

Step 2 144 39.2 71.3 121 42.2 56.5

Step 3 138 39.2 64.7 111 43.8 47.2

Marconi KNL (Intel 17) performance in seconds Haswell (Gnu 6.2.0) performance in seconds

Propagation Velocity map. Spatial map. Propagation Velocity map. Spatial map.

Step 3 104 34.1 38.9 111 43.8 47.2

Marconi - issues

35

• Scalability not impressive
o Also visible in MPI synthetic benchmarks

• Occasionally large variability between runs
o Cleans up after reboots

• Poor IO latency
o Rewrite IO library to buffer calls to MPI IO

Outlook

36

• 6D still target - requires much
quicker improvement than
through moores law

• Reduce memory consumption
o No target in translation
o Compression for phase space

values
o AMR in all 6 D

• Reduce computational load
o AMR in all 6D
o No global timestep

Q?

37

