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• Vlasiator (vlasiator.fmi.fi) 
simulates plasma in near-earth 
space

• Hybrid-Vlasov description
o Electrons: Charge-neutralizing fluid                              
o Ions: 6D distribution function
o Supports multiple ion species
o Multi-temperature ion physics
o Noise-free

• Science
o Simulations of Earth’s 

magnetoshpere
o Also shocks, and possibly other 

settings

Foreshock

Shocked 
plasma in  
magneto-
sheath



Global modelling techniques
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Global modelling techniques
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• 2013
• PRACE access, 30 MCPUh on Hermit (Cray XE6)
• European suprcomputing infrastructure: 

http://www.prace-ri.eu/
• 5D simulations in XY plane

• 2014 
• Pilot usage of Sisu (Cray XC40)
• Kinetic scale 5D simulation in XY and XZ plane

• 2015
• PRACE : 24 MCPUh on Hornet (Cray XC40)
• CSC: 12 MCPUh grand challenge

• 2017-18
• PRACE: 1.1 MNodeh Marconi  (KNL)

Recent compute campaigns
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Ecliptic runs 
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https://docs.google.com/file/d/0BzF91lVwnx6NWjVqTVZmd0tPOFk/preview


Polar runs
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https://docs.google.com/file/d/0BzF91lVwnx6NV2I4bWtlQ1QtVDg/preview


Hybrid Vlasov
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• Protons: 6D distribution function               
that advects according to the Vlasov 
equation:

• From f  one can compute density, 
temperature, ...

● Hybrid: electrons are a massless (ideal) 
MHD fluid, following Maxwell’s equations

● Closed by an Ohm’s law



• Size of distribution function
o Spatial resolution

o Ion-kinetic physics require sufficient real space resolution to be resolved, 
200 - 300 km

o Typically 2D simulations, order of 2000 x 2000 spatial cells
o Velocity resolution

o Need to resolve & limit diffusion, for current solvers 30 km/s
o +- 2000 - 3000 km/s (at least) in each dimension. 
o Dense scheme up to 8M  phase space cells per spatial cell, sparse 

scheme gives max average 200k phase space cells 
o In total order of 1012 phase space cells (1015 with dense implementation)
o Both a challenge in terms of CPUh, as well as memory consumption
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Computational challenge



• Time
o Strong B close to Earth inner boundary => Large acceleration 

and high wave velocities (whistler, Alfvén) leading to short 
timesteps

Targets

1. Minimize number of phase space cells
2. Accurate solvers with large  dt
3. Efficient implementation – scalability and 

computational throughput 
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Computational challenge



Vlasov propagation
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Numerical method: 
discretization

• Proton distribution function discretized 
onto 6D cartesian mesh as volume average

• 3D real space mesh (x,y,z)
o MPI parallel  DCCRG :github.com/fmihpc/dccrg)
o Each cell has a 3D velocity mesh

• 3D velocity space meshes (vx, vy, vz)
o Comprises blocks of 4 x 4 x 4 phase space cells
o Sparse - only blocks with content exist 
o Single precision in production runs
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Sparse velocity space mesh

6D cartesian mesh: 3D real space + 3D velocity 
space 
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• Vlasov solver
o This is where ~90% of time is spent
o Real space propagation and velocity space  propagation split 

with Strang splitting in two 3D propagations

o 2011 – 2014: 2nd order accurate Finite Volume Method 
approach (Langseth & Leveque 2000).

o 5th order accurate conservative Semi-Lagrangian scheme  
(SLICE-3D Zerroukat 2012)

Propagation



Vlasov propagation

• Propagation based on Slice3D algorithm
• Semilagrangian method, split in 3 1D propagations 

1. Compute how the grid moves over one timestep. This
is a euclidian transformation (rotation & translation)

2. For z,x,y sweep map along dimension
a. Compute intersections of new grid with the original 
b. Compute 1D polynomial (4th order) reconstruction for each cell 
c. Map the value to the departure grid by integrating the reconstructed polynomial between the 

intersection points
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• Vlasiator supports1D reconstructions
• PLM: Piecewise Linear Method 

• PPM: Piecewice Parabolic Method

• PQM: Piecewice Quartic Method
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1D reconstructions



• PQM (White et al. 2008)
• Piecewice polynomials of order 4

• Five constraints used to determine a
• 1. Conservative, integral over cell equals mass
• 2 - 5: At cell edges the Rj matches edge values and slopes

• Edge values and slopes estimated with 8th and 6th 
order explicit estimates – compact stencil

• Limited to make sure the reconstruction is 
bounded and monotonic
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1D reconstructions



Singel Maxwellian with T=500kK
Temperature after 10 gyroperiods, in total 3600 steps

    (km/s)18

Diffusion



• Not CFL limited in velocity space 
o we typically set max dt to 5% of the gyroperiod

• Order
o 1D splits makes it easier to add higher order reconstructions
o PQM is significantly better than PPM, especially in velocity space
o In ordinary space we still use PPM due to more compact stencils

• Performance
o It is easy to vectorize efficiently due to the 1D nature
o Algorithm maps very well to GPUs (work ongoing)
o Solves 13 Mcells/s per 3D propagator (Haswell, 2.6GHz)  
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Vlasov propagation



Parallelization on three levels

1. Across nodes on clusters & supercomputers - MPI 
o Domain decomposition of ordinary space (r)
o Implemented by DCCRG library (https://github.com/fmihpc/dccrg)
o Frequent load balancing due to sparse velocity mesh (RCB, Zoltan)

2. Across cores on nodes – OpenMP
o Propagation in velocity space threaded over spatial space
o Propagation in spatial space threaded over velocity space 

3. Across core – Vectorization 
o Planes in 4 x 4 x 4 velocity blocks perpendicular to map dimension vectorized
o Vlasov solvers written using templated vector data type: 

http://www.agner.org/optimize/#vectorclass
o SSE2, AVX, AVX-512 supported (4, 8 or 16 single precision floats)
o Main data arrays aligned 
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Vectorization example
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Density (1/m^3) Computational load MPI computational
domains

MPI parallelization



9.6.2015 Finnish Meteorological Institute23

Strong scaling

Scalability



Fieldsolver
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• Fieldsolver 
o Second-order accurate upwind 

constrained transport method 
[Londrillo and del Zanna 2004]

o Fieldsolver 2nd order accurate in 
time and space (Runge Kutta) 

o Divergence of B is preserved - no 
cleaning needed

o Field Solver CFL depending on B 
(Alfven & Whistler speed) Large B 
near the inner boundary, 
especially near the poles. FS 
Subcycling is required

Propagation



Fieldsolver & load imbalance

• Fieldsolver in principle cheap to compute, but can at scale 
take up to 20%
o Requires several communication passes per cycle 
o Subcycling - tens of cycles per vlasov propagation
o Bad load imbalance - load balance optimized for Vlasov fluid

• Heterologous domain decomposition
o Field solver on simple, MPI-Cartcomm uniform spatial 

decomposition.
o Moments from Vlasov solver get transferred into field solver (1 - to - 

N) 
o Field quantities get transferred back after FS steps (1 - to - N)
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KNL optimizations
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Performance development

28



Intel Xeon Phi - Knights Landing
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• Compute
o Up to 72 cores in 36 Tiles on 2D 

Mesh 
o AVX512
o 3+TF DP, 6+TF SP Flops 

• Memory
o MCDRAM: 16 GB on-package; 

400+GB/s
o DDR

• Integrated Omnipath 



Step 1 -porting
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• KNL test system 
o Colfax Ninja development platform with Xeon Phi 7210 (1.3GHz, 64 cores)
o Marconi - 3600 node cluster with 1.4GHz, 68 core KNLs, Omnipath
o Comparisons against one node on Cray XC40 with dual Haswell 12c at 2.6 GHz

• Code uses Agner’s vectorclass 
o AVX512 support -  3x performance compared to non-vectorized version

• Allocaters matter 
o TBBMalloc gives  30% boost

• 4 threads per core optimal - 2x better than 1
• Cache mode & Quadrant targeted 

o Mode used in Marconi
o Working set much larger than MCDRAM



Internal profiling output - KNL

                     Timers with more than 1% of total time. Set of identical timers has 16 processes with up to 16 threads each.

------------------------------------------------------------------------------------------------------------------------------------------------------

 |                                                                  | Count |         Process time         | Thread imbalances  | Workunits         | 

------------------------------------------------------------------------------------------------------------------------------------------------------

 | Id  | Lvl | Grp | Name                                           | Avg   | Avg (s) | Time % | Imb %     | No | Avg % | Max % | Avg               | 

------------------------------------------------------------------------------------------------------------------------------------------------------

 | 1   | 1   |     | main                                           | 1     | 412.8   | 100    | 0.0006138 | 1  |       |       |                   | 

 | 2   | 2   |     |   Initialization                               | 1     | 194.9   | 47.22  | 0.005305  | 1  |       |       |                   | 

 | 131 | 2   |     |   Simulation                                   | 1     | 217.1   | 52.59  | 0.01734   | 1  |       |       |                   | 

 | 138 | 3   |     |     Propagate                                  | 10    | 211.5   | 97.4   | 0.04377   | 1  |       |       | 9.164e+06 Cells/s | 

 | 147 | 4   |     |       Spatial-space                            | 10    | 73.23   | 34.63  | 0.8482    | 1  |       |       | 2.646e+07 Cells/s | 

 | 202 | 4   |     |       Velocity-space                           | 10    | 134.6   | 63.66  | 0.07267   | 1  |       |       | 1.44e+07 Cells/s  | 

 | 203 | 5   |     |         semilag-acc                            | 10    | 131.5   | 97.65  | 0.06411   | 1  |       |       |                   | 

 | 205 | 6   |     |           cell-semilag-acc                     | 351   | 98.65   | 75.05  | 3.006     | 16 | 1.576 | 1.927 |                   | 

 | 209 | 6   | A   |           re-adjust blocks                     | 10    | 29.41   | 22.37  | 16.59     | 1  |       |       |                   | 

 | 216 | 3   |     |     compute-timestep                           | 9     | 4.901   | 2.258  | 0.02068   | 1  |       |       |                   | 

------------------------------------------------------------------------------------------------------------------------------------------------------
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● Performance on KNL not competitive out-of-the-box compared to HSW
○ Total Propagation: x 0.67 
○ Kernel 1: Velocity space propagation:  x 0.67  
○ Kernel 2: Real space propagation: x 0.77 
○ Initial focus on velocity space propagator -  Mapping 47% of total propagation



Kernel 1: Velocity space 

• Original
o Threaded over velocity meshes (i.e. real space cells)
o In-place propagation - blocks are sorted along pencils

and each pencil is loaded into a temporary array
o Writes out target values directly into original mesh

• Step 1
o Removed dynamic block creation from loop, is now done in advance for each pencil
o Removed all conditionals from loop
o Loop changed to for loop and target cells are contiguous in memory

• Step 2
o Storage loop now insignificant 
o 10% of time was spent in one sqrt call in interpolation filtering, replaced by AVX512ER call
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Kernel 2: Real space 

• Original
o Threaded over blocks in inner loop
o Translation uses separate target grid - the point where memory consumption is highest
o Load block data 

o A unordered map maps block id to its actual location in data array
o Block removal and addition keeps the data array packed, and thus the block positions are 

randomized over time
o Hardware prefetching does not function well 

• Step 3
o Prefetch data

• Step 4 (in progress
o Swap loops over real space cells and blocks and sort list-of-spatial cells into pencils as in 

acceleration
o Can do translation in-place, halfs memory consumption
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Speedup
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KNL (Intel 17) performance in seconds Haswell (Gnu 6.2.0) performance in seconds

Propagation Velocity map. Spatial map. Propagation Velocity map. Spatial map.

Original 211 98.7 73.2 144 66.0 56.5

Step 1 149 44.5 71.3 121 42.2 56.5

Step 2 144 39.2 71.3 121 42.2 56.5

Step 3 138 39.2 64.7 111 43.8 47.2

Marconi KNL (Intel 17) performance in seconds Haswell (Gnu 6.2.0) performance in seconds

Propagation Velocity map. Spatial map. Propagation Velocity map. Spatial map.

Step 3 104 34.1 38.9 111 43.8 47.2



Marconi - issues
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• Scalability not impressive
o Also visible in MPI synthetic benchmarks

• Occasionally large variability between runs
o Cleans up after reboots

• Poor IO latency
o Rewrite IO library to buffer calls to MPI IO



Outlook
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• 6D still target - requires much 
quicker improvement than 
through moores law

• Reduce memory consumption
o No target in translation
o Compression for phase space 

values
o AMR in all 6 D

• Reduce computational load
o AMR in all 6D
o No global timestep



Q?
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