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Recent PIC successes: collisionless shocks

reconnection
laboratory plasma

Astrophysical phenomena that can be studied with
kinetic simulations:

Persistent sources:

accreting black holes
neutron star magnetosphere (pulsars, magnetars)

Explosions:

magnetar flares (cf. solar flares)
cosmological gamma-ray bursts (GRBs), supernovae



Energy transformation in compact objects

gravity -> kinetic energy -> magnetic fields, heat -> radiation

ways of particle acceleration

reconnection, shocks, electric gaps

new processes for kinetic plasma simulations:

radiative cooling, e+- pair creation, coherent emission
in strong (often dominant) magnetic fields

— unfamiliar PIC territory: what problems are doable?



I. Rotation-powered pulsars



Pulsar

« beamed coherent radio emission

* Xly-ray emission
* e+-loaded wind

Crab nebula in X-rays
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Vacuum model

Vacuum magneto-dipole radiation

d 1Q  2ji’

dr 2 3¢’

Induced electric field; Poynting flux

Gould 1968
Pacini 1968
Gunn, Ostriker 1969



Force-free model

Co-rotating plasma: v = Qxr

E+vxB/c=0

Goldreich, Julian (1969)

(aligned rotator: Q || )
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Both vacuum and force-free models address the
question of how rotational energy is extracted from
the star but not how it is dissipated

Neither vacuum nor force-free models can be correct,
as they imply no energy dissipation => no emission

— there must be gaps in plasma-filled magnetosphere!

— continual electric discharge in the gap



Electric discharge

Sturrock 1971; \
Ruderman, Sutherland 1975 \
Arons, Scharlemann 1979

Cheng et al. 1986 Unscreened E || B

= particle acceleration
= curvature radiation
= photon conversion to e+-

New approach to the old puzzle: global PIC simulations

Chen, AB 2014; Philippov et al. 2014, 2015; Cerutti et al. 2015, 2016; Belyaev 2015



Numerical experiment

dp/dt =eE +ev x B/c

0B/0t = —cV x E
OE/Ot =cV x B —4nJ

Start with a non-rotating star and
spin it up. E will be induced

Particles lifted from the star will
move in the self-consistent
electromagnetic field

E and B: fixed inside the star,
calculated from Maxwell equations
outside the star

Accelerated particles emit photons

High-energy photons convert to e+-



Method: Particle in cell (PIC) + pair creation:
« fields calculated on a (curvilinear) grid
« particles followed individually

e photon emission, tracing, and
pair creation: Monte-Carlo



Time = 0.08

electric current

Chen & AB 2014



aligned rotator

charge density: -blue + orange
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Typical pulsars:
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Scales

Ric = é — (10 — 104)R,

Ane? B .

Me 2mce

R
—~ ~10° — not doable, as A\, must

Ap be resolved => rescaling

Q<< wp <L Wpg

~ 1.8 x10Y9Bj5 rad/s  Q ~ 10° rad/s



Energy scales

NQ2 GCI)()
2 Yo =

Rotation-induced voltage: &, =

1/ R\ (R’
=\ Ric ) \ N,

No way to reach true energies needed for pair creation =>

1) rescaling the threshold for discharge (rescaling photon
emission rates and their conversion probabilities)

2) rescaling the energies of secondary pairs

MeC?

(effectively changing Planck constant)

but preserving hierarchy 1 < 75 < Y¢nr < Y0



Worries

— unresolved gyration near the star

— small light cylinder radius

— low multiplicity of pair creation

— low g

— no synchrotron emission from secondary pairs
— small m;/me

* what is lost after re-scaling?
* how should the simulation be scaled to real pulsars?
* 1s it possible to implement full radiative transfer?



What questions should be asked?

* Conditions for activating a pulsar

* Where is the “gap”? Where is energy dissipated?
(inside and outside LC)

* Where are pairs created?
e What is the mechanism of current closure?

* Where are coherent radio waves produced
and by what mechanism?

* What governs the diversity of pulsars?
(rotation rate? misalignment? multipoles?)



Magnetars
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Cycle: 0 Time:0

twisted closed
magnetosphere:
j-bundle formation
and slow untwisting

Min: 0.000

Chen & AB 2017:
PIC simulations

e+- discharge controls
magnetosphere evolution

B
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Over-twisted magnetospheres: flares

Bs
B

'1.0

Parfrey et al. 2013



II. Magnetic flares near
accreting black holes
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Self-similar
chain of
plasmoids:
r;, < w < 0.1s

Uzdensky et al. 10
Melzani et al. 14
M Sironi, Spitkovsky 14
Guo et al.16
Sironi et al.16
Werner et al.16




Radiative magnetic reconnection:

B? 2
= _2Us| _ 1 —10°
Adtpc?  pc?

1. Magnetization: |0

2. Compactness: cooling time vs. light crossing time
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Reconnection in the radiative regime
(high compactness parameter)

rI>1 = 1. Plasmoids are cooled
2. Energetic photons (>1 MeV) convert
to e+- pairs

AB 2017



Mechanism of pair creation:
photon-photon collisions v+~ — e 4+ ¢~

threshold Ei1Es > (m602)2
cross section near threshold 0~ ~ 0.1loT

optical depth Tyy = OynyNyS > 1



Bulk motion of pair-loaded chain plasmoids

U
Magnetic stresses push plasmoids:  foush = & Z5B
w

Radiation exerts drag: Jdrag ~ 672 UiaaoTn+

Drag-limited motion: 7y = (T* / Tpl)l/ - (v < g1/ 2)

Up 'S

~J
~

Urad ﬁ rec
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Kinetic simulations of black hole flares

Step 1: “switch on” Compton cooling in a PIC simulation of
reconnection (Sironi & AB, in preparation)
Next implement:
— synchrotron cooling
— Comptonization (radiative transfer) 7 ~ 1
— pair creation (nonthermal cascade)
— thermalization by Coulomb collisions

— synchrotron self-absorption

2D should be sufficient; Vlasov’s method may be preferred



Challenges: rescaling!
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High-energy particles from X-points
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III. Shock waves in GRBs

40



Ny [T ~ 10°  radiation mediated shocks

Zeldovich, Raizer 1966
Weaver 1976
Blandford, Payne 1981
Budnik et al. 2010
Levinson 2012

AB 2017

Do GRB shocks generate energetic particles?
Do GRB shocks create e+- pairs?



Radiation MHD from first principles: “Photon In Cell”

Fluid motion: Lagrangian grid

Radiation: individual photons
Monte-Carlo scattering



Radiation mediated shock (B=0)
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Shock structure: e+- dressed
ni /ny ~ 107

Vv

downstream

AB 2017



Shock structure with pair creation
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Consequences of pair creation:

— pairs increase optical depth and give “grip” to radiation
=> upstream decelerates
— energy per electron is reduced

Velocity profile between upstream and downstream is
shaped by radiation pressure + collisionless jump

Pairs in the shock are producers of inverse Compton
and synchrotron radiation.

=> injection of e+- stream ahead of the shock
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Weakly magnetized relativistic shocks in transparent plasma
(particle accelerators):

What happens at high compactness (bright compact objects),
where particle acceleration leads to e+- creation?

— generation of long-lived magnetic fields?  Derishev et al. 2016
— bootstrap/new nonlinear shock structure?

— characteristic self-regulated radiation spectra?

— limit cycle?

Challenge: huge difference in scale between plasma
and radiative processes

48



Summary
New era of kinetic plasma simulations
+ detailed radiative simulations

Exa-rescaling (depending on the problem)

Magnetic reconnection < shocks < pulsars



