

Exascale Thinking of Particle Energization Problems

from 28 August 2017 to 01 September 2017

Nordita, Stockholm

Numerical methods in WarpX and PICSAR: new tools toward exascale AMR-PIC modeling of relativistic plasmas

Jean-Luc Vay - Lawrence Berkeley National Laboratory

with A. Almgren¹, J. Bell¹, G. Blaclard^{5,1}, L. Ge³, B. Godfrey^{4,1}, D. Grote², M. Kirchen⁶, O. Kononenko³, M. Hogan³, R. Lehe¹, M. Lobet⁵, A. Myers¹, C. Ng³, J. Park¹, R. Ryne¹, O. Shapoval¹, M. Thevenet¹, H. Vincenti^{5,1}, W. Zhang¹

¹Lawrence Berkeley National Laboratory
²Lawrence Livermore National Laboratory
³SLAC Accelerator National Laboratory
⁴U. Maryland
⁵CEA Saclay, France
⁶U. Hamburg, Germany

Outline

- Context & overview of the project
- Code structure, libraries & optimization on Intel KNL
- Advanced algorithms
- Progress
- Next steps & Summary

Outline

- Context & overview of the project
- Code structure, libraries & optimization on Intel KNL
- Advanced algorithms
- Progress
- Next steps & Summary

Plasma physics modeling is complex

- Rich physics, full of real instabilities, and even more spurious numerical instabilities
- Large range of space and time scales
- Field has fostered the development of better algorithms and pushed toward use of supercomputers
- The trend continues → need for more accurate, stable algorithms with implementations that take advantage of emerging architectures and scale to future exascale machines

Plasma applications need more accurate, faster codes

5 Exascale Computing Project

U.S. DOE Exascale Computing Project (ECP)

- As part of the National Strategic Computing initiative, ECP was established to accelerate delivery of a capable exascale computing system that integrates hardware and software capability to deliver approximately 50 times more performance than today's 20-petaflops machines on mission critical applications.
 - DOE is a lead agency within NSCI, along with DoD and NSF
 - Deployment agencies: NASA, FBI, NIH, DHS, NOAA
- ECP's work encompasses
 - applications,
 - system software,
 - hardware technologies and architectures, and
 - workforce development to meet scientific and national security mission needs.

DOE Exascale Computing Project Applications (1ST ROUND)

Title	Team
Computing the Sky at Extreme Scales	Salman Habib (ANL)+LANL,LBNL
Exascale Deep Learning and Simulation Enabled Precision Medicine for Cancer	Rick Stevens (ANL)+LANL, LLNL, ORNL, NIH/NCI
Exascale Lattice Gauge Theory Opportunities and Requirements for Nuclear and High Energy Physics	Paul Mackenzie (FNAL)+BNL,TJNAF,Boston U.,Columbia U., U. of Utah,Indiana U., UIUC,Stony Brook,College of William & Mary
Molecular Dynamics at the Exascale: Spanning the Accuracy, Length and Time Scales for Critical Problems in Materials Science	Arthur Voter (LANL)+SNL, U. of Tennessee
Exascale Modeling of Advanced Particle Accelerators	Jean-Luc Vay (LBNL)+LLNL, SLAC
An Exascale Subsurface Simulator of Coupled Flow, Transport, Reactions and Mechanics	Carl Steefel (LBNL)+LLNL, NETL
Exascale Predictive Wind Plant Flow Physics Modeling	Steve Hammond (NREL)+SNL,ORNL, U. of Texas Austin
QMCPACK: A Framework for Predictive and Systematically Improvable Quantum-Mechanics Based Simulations of Materials	Paul Kent (ORNL)+ANL,LLNL,SNL,Stone Ridge Technology, Intel, Nvidia
Coupled Monte Carlo Neutronics and Fluid Flow Simulation of Small Modular Reactors	Thomas Evans (ORNL,PI)+ANL, INL, MIT
Transforming Additive Manufacturing through Exascale Simulation (TrAMEx)	John Turner (ORNL)+LLNL, LANL, NIST
NWChemEx: Tackling Chemical, Materials and Biomolecular Challenges in the Exascale Era	T. H. Dunning, Jr. (PNNL), + Ames, ANL, BNL, LBNL, ORNL, PNNL, Virginia Tech
High-Fidelity Whole Device Modeling of Magnetically Confined Fusion Plasma	Amitava Bhattacharjee (PPPL)+ANL,ORNL, LLNL, Rutgers, UCLA, U. of Colorado
Data Analytics at the Exascale for Free Electron Lasers	Amedeo Perazzo (SLAC)+LANL, LBNL, Stanford
Transforming Combustion Science and Technology+Exascale Simulations	Jackie Chen (SNL)+LBNL, NREL, ORNL, U. of Connecticut
Cloud-Resolving Climate Modeling of the Earth's Water Cycle	Mark Taylor (SNL)+ANL, LANL, LLNL, ORNL, PNNL, UCI, CSU

Particle accelerators are essential tools in modern life

Medicine

- ~9000 medical accelerators in operation worldwide
- 10's of millions of patients treated/yr
- 50 medical isotopes, routinely produced with accelerators

Industry

- ~20,000 industrial accelerators in use
- Semiconductor
 manufacturing
- cross-linking/ polymerization
- Sterilization/ irradiation
- Welding/cutting
- Annual value of all products that use accel. Tech.: \$500B

National Security

- Cargo scanning
- Active interrogation
- Stockpile stewardship: materials characterization, radiography, support of non-proliferation

Discovery Science

- ~30% of Nobel Prizes in Physics since 1939 enabled by accelerators
- 4 of last 14 Nobel Prizes in Chemistry for research utilizing accelerator facilities

Opportunity for much bigger impact by reducing size and cost.

EXASCALE COMPUTING PROJECT

Plasma-based acceleration has the potential to make accelerators small (again), and cut cost dramatically

Tens of plasma accelerator stages needed for a 1 TeV e⁻e⁺ collider.

BUT: simulations in 2-D can take days for 1 stage (even at insufficient resolution for collider beam quality).

→ Full 3-D modeling of tens of stages intractable without Exascale computing.

Plasma accelerators "surf" electrons on plasma waves for *acceleration on ultra short distances*

Example from simulation of laser-driven plasma accelerator

11 Exascale Computing Project

Example from simulation of particle beam-driven plasma accelerator

12 Exascale Computing Project

Plasma accelerators are challenging to model

For a 10 GeV LPA scale stage:

Short driver/wake propagates through long plasma

➔ Many time steps.

~1µm wavelength laser propagates into ~1m plasma

→ millions of time steps needed

Non-linear regime:

very small features

→ small grid cells

ECP Project WarpX: Exascale Modeling of Advanced Particle Accelerators

Goal (4 years): Convergence study in 3-D of 10 consecutive multi-GeV stages in linear and bubble regime, for laser-& beam-driven plasma accelerators.

How: → Combination of most advanced algorithms

→ Coupling of Warp+BoxLib/AMReX+PICSAR

Team: LBNL ATAP (accelerators) + LBNL CRD (computing science) + SLAC + LLNL

Ultimate goal: enable modeling of 100 stages by 2025 for 1 TeV collider design!

Outline

- Context & overview of the project
- Code structure, libraries & optimization on Intel KNL
- Advanced algorithms
- Progress
- Next steps & Summary

UML Diagram of WarpX details code structure

PICSAR created as part of NERSC Exascale Applications Program (NESAP)

NERSC

NESAP Codes

Warp EM-PIC kernel extracted → Particle-In-Cell Scalable Architecture Resources (PICSAR)

Optimized with new vectorization algo.* + tiling/sorting + OpenMP + MPI

E(C)F

EXASCALE COMPUTING PROJECT

PICSAR website: <u>https://picsar.net</u> - to be open source access soon.

17 Exascale Computing Project

Newest NERSC supercomputer based on Intel KNL

Cori*:

- 9,688 Intel KNL nodes (658,784 cores)
- 29.1 PFlops total (theoretical peak)
- # 6 on top500 list

Peak performance: 3 TfFops per socket:

- 68 cores at 1.4–1.6 Ghz for energy performance
- 4 threads/core
- 2 VPU AVX-512 vector register per core (up to 16 DP floats)
- 34 Mb L2 cache per node but no L3

KNL does not forgive optimization laziness anymore

- Frequency divided by 2 per core
- No low latency L3 cache

Intel KNL

[1] www.nersc.gov

Courtesy J. Deslippe, M. Lobet

Charge/current deposition leads to Vectorization bottleneck *Data is also not contiguous in memory*

- ! Charge deposition simplified algorithm
- For each particle in a tile:
 - 1) Determine nearby nodes on the charge grid
 - 2) Compute current/charge of the particle
 - 3) Deposit contributions to the charge grid
- Step 1) & 2) can be vectorized
- Step 3) prevents vectorization due to memory races when 2 particles are in the same cell
- Grid nodes not aligned in memory: gather/scatter

- Charge rho(NCELLS)
- Current grids Jx(NCELLS), Jy(NCELLS), Jz(NCELLS)

Revised data structure enables vectorization*

And contiguous data in memory

0

Order of deposition

- New dimension in the current and charge array to access vertices of a cell in a contiguous way
- Enable vectorization of the deposition with no memory races, no gather/scatter
- Reduction at the end in the original structure: Non-efficient vectorization but in O(Ncells) with Ncells << Nparticles

20 Exascale Computing Project *H. Vincenti, R. Lehe, R. Sasanka and J.-L. Vay, Comp. Phys. Comm., 210, 145-154 (2017)

PICSAR single-node performance on Haswell and KNL

Outline

- Context & overview of the project
- Code structure, libraries & optimization on Intel KNL
- Advanced algorithms
- Progress
- Next steps & Summary

We will combine advanced algorithms

We are combining advanced algorithms

Lower # time steps:

• optimal Lorentz boosted frame

→ Speedup = $(L'/\lambda')/(L/\lambda) = \gamma^2(1+\beta)$

Example: 10 GeV scale laser-plasma accelerator stage

Faster, but:

- plasma with relativistic drift is sensitive to numerical Cherenkov instability (NCI)
- physics in boosted frame looks different from physics in lab frame
 - ➔ need to transform data back to lab. Frame.

Specialized output needed to reconstruct data in lab frame

We are combining advanced algorithms

Implementation of mesh refinement based on Warp algorithm

- 1. J.-L. Vay, P Colella, P Mccorquodale, B Van Straalen, A Friedman, and D. P. Grote. Laser & Particle Beams 20, 569–575, (2002).
- 2. J.-L. Vay, J.-C. Adam, A. Héron, Computer Physics Comm. 164, 171-177 (2004).
- 3. J.-L. Vay, D. P. Grote, R. H. Cohen, & A. Friedman, Computational Science & Discovery 5, 014019 (2012).

Electrostatic mesh refinement algorithm is straightforward

- 1. Solve on coarse grid.
- 2. Interpolate on fine grid boundaries.
- 3. Solve on fine grid.

Electrostatic mesh refinement algorithm is straightforward

- 1. Solve on coarse grid.
- 2. Interpolate on fine grid boundaries.
- 3. Solve on fine grid.

Electrostatic mesh refinement algorithm is straightforward

- 1. Solve on coarse grid.
- 2. Interpolate on fine grid boundaries.
- 3. Solve on fine grid.

Addition of buffer zone to control spurious "self-force"

- 1. Solve on coarse grid.
- 2. Interpolate on fine grid boundaries.
- 3. Solve on fine grid.
- 4. Disregard fine grid solution close to edge when gathering force onto particles.

Electromagnetic MR algorithm is more complex

Interpolation between levels induces reflection of EM waves

 \rightarrow decoupling of levels with termination of regions with PMLs

We are combining advanced algorithms

Arbitrary-order Maxwell solver offers flexibility in accuracy (on centered or staggered grids)

Analytical integration in Fourier space offers infinite order

Pseudo-Spectral Analytical Time-Domain¹ (PSATD)

$$B_{z}^{n+1} = \mathcal{F}^{-1}\left(C\mathcal{F}\left(B_{z}^{n}\right)\right) + \mathcal{F}^{-1}\left(iSk_{y}\mathcal{F}\left(E_{x}\right)\right) - \mathcal{F}^{-1}\left(iSk_{x}\mathcal{F}\left(E_{y}\right)\right)$$

with $C = \cos\left(kc\Delta t\right); \quad S = \sin\left(kc\Delta t\right); \quad k = \sqrt{k_{x}^{2} + k_{y}^{2}}$

Easy to implement arbitrary-order *n* with PSATD ($k=k^{\infty} \rightarrow k^n$).

Both arbitrary order FDTD and PSATD to be implemented in WarpX.

¹I. Haber, R. Lee, H. Klein & J. Boris, *Proc. Sixth Conf. on Num. Sim. Plasma*, Berkeley, CA, 46-48 (1973) ₃₇

We are combining advanced algorithms

Relativistic plasmas PIC subject to "numerical Cherenkov"

B. B. Godfrey, "Numerical Cherenkov instabilities in electromagnetic particle codes", J. Comput. Phys. 15 (1974)

Numerical dispersion leads to crossing of EM field and plasma modes -> instability.

Space/time discretization aliases -> more crossings in 2/3-D

Space/time discretization aliases -> more crossings in 2/3-D

Local special filter efficiently suppresses instability

Filters fields seen by particles using 9-points linear smoothing in direction of plasma drift;

- key feature:
 - slightly different smoothing for Ex and By
- inexpensive and easy to implement
- local: amount of smoothing similar to standard 3-pass bilinear filter

*B. Godfrey & J.-L. Vay, J. Comput. Phys. 267 (2014)

PSATD also enables integration in Galilean frame

Derivation of the algorithm: Lehe et al., Phys. Rev. E 94, 053305 (2016)

Galilean PSATD is stable for uniform relativistic flow

Uniform plasma streaming in 2D periodic box

44 Exascale Computing Project

We are combining advanced algorithms

Spectral solvers involve global operations \rightarrow harder to scale to large # of cores

Harder to scale

Easier to scale

Ο

0

0

0

0

Finite speed of light -> local FFTs -> spectral accuracy+FDTD scaling!

J.-L. Vay, I. Haber, B. Godfrey, J. Comput. Phys. 243, 260 (2013) H. Vincenti, J.-L. Vay, Comput. Phys. Comm. 200, 147 (2016)

46 Exascale Computing Project

Local FFT example on single pulse – part 1

*J.-L. Vay, I. Haber, B. Godfrey, J. Comput. Phys. 243, 260-268 (2013)

Local FFT example on single pulse – part 2

48 Exascale Computing Project

Truncation errors may lead to instabilities that needed to be studied.

Finite-order stencil offers scalable ultra-high order solver

Truncation error analysis \rightarrow ultra-high order possible with much improved stability

Enabled demonstration of novel spectral solver with local FFTs scaling to ~1M cores

H. Vincenti et al., Comput. Phys. Comm. 200, 147 (2016).

H. Vincenti, J.-L. Vay, "Ultrahigh-order Maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas.", http://arxiv.org/abs/1707.08500.

Applied successfully to modeling of laser-plasma experiments at CEA Saclay in cases where standard second-order FDTD solvers fail (PRL in press, other papers in preparation).

Outline

- Context & overview of the project
- Code structure, libraries & optimization on Intel KNL
- Advanced algorithms
- Progress
- Next steps & Summary

First simulations of plasma-based accelerators with WarpX (03/17)

WarpX successfully benchmarked against Warp.

Electrostatic MR was implemented and tested

Test: Single particle attracted by image in conducting wall

Mesh refinement induces spurious "self-force" at interface.

Addition of buffer zone to control spurious "self-force"

- 1. Solve on coarse grid.
- 2. Interpolate on fine grid boundaries.
- 3. Solve on fine grid.
- 4. Disregard fine grid solution close to edge when gathering force onto particles.

Adding a buffer region removes spurious trapping

Wider buffer region enables accurate result

55 Exascale Computing Project

Electromagnetic MR was implemented and tested

Single particle orbiting around an external magnetic field, emitting synchrotron radiation

Validation on many particles `beam breathing' test

Electron Gaussian distribution with inward initial radial velocity on top of static proton dist.

0.254

0.252

16 + 1

32 + 1

32

Electron beam contraction/expansion depends on resolution.

MR enables higher accuracy, covering fraction of box.

0.8

1.0

1e-7

Laser injection with mesh refinement was validated

Laser generated with antenna.

WarpX visualization tools are being developed

3D rendering of WarpX plasma accelerator simulation with yt

- Supports AMReX & OpenPMD data structures (OpenPMD dev. Synergistic with CAMPA)
- Interface using Python, Jupyter notebooks and/or GUI.

Prototype WarpX data analysis GUI

Outline

- Context & overview of the project
- Code structure, libraries & optimization on Intel KNL
- Advanced algorithms
- Progress
- Next steps & Summary

7-year plan for Exascale project WarpX

From initial code coupling to ensemble of 100 GeV-scale stages

Summary and outlook

- Modeling of plasmas is complex
 - Rich physics, instabilities, many time scales, ...
 - Need to continue pushing the frontier with better algorithms and Exascale computing
- New generation processors (Manycore, GPU, ...) need special care
- PICSAR provides open source community library for PIC kernel
- WarpX project is developing exascale-ready AMR-PIC code

Thank you!

EXASCALE COMPUTING PROJECT