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Magnetar: Phenomenology

Magnetars are rotating neutron stars with extra-strong magnetic field.

Spin period P and spindown P have been measured for most known
magnetars. Most have B > 10 G. Spindown power usually much smaller

than X-ray luminosity.
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Magnetar: Phenomenology

Magnetars are rotating neutron stars with extra-strong magnetic field.

Spin period P and spindown P have been measured for most known
magnetars. Most have B > 10 G. Spindown power usually much smaller

than X-ray luminosity.

Bi-modal distribution in quiescent luminosity:
@ Persistent magnetars: bright quiescent emission with rising spectrum
at > 10keV
@ Transient magnetars: observed during outbursts, with sudden rise in
luminosity and subsequent long decay
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Magnetar: Example

Light curve of transient magnetar XTE J1810-197 after outburst (Gotthelf
& Halpern 2007)
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Magnetars: Examples

Persistent emission spectrum from 1E 22594586 (Vogel et. al. 2014)
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-
Shrinking Hotspot

The X-ray spectrum of a transient magnetar after outburst can often be
fitted with a blackbody due to a hotspot on the star. 7 of the transient
magnetars show a shrinking hotspot (Beloborodov & Li 2016)
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N
Twisted Field Line Bundle

What happens when the crust is moved and Alfven wave is launched into
the magnetosphere?
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N
Twisted Field Line Bundle

What happens when the crust is moved and Alfven wave is launched into
the magnetosphere?

@ Simplest case, an axisymmetric
twist. Shearing motion on the
star launches Alfven waves
along the field lines

VxB+#0

@ Current will flow due to
non-zero V x B

@ Is the plasma extracted from
the surface or from pair
creation?
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Magnetar Corona

The twisted field line bundle is similar to the solar corona
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Magnetar Corona

The twisted field line bundle is similar to the solar corona

However the corona is charge-starved in the magnetar case. Pair creation
is required to conduct the current.
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Questions

Questions that can be answered by simulation:

@ From first principles, what will actually happen if we launch a twist
into the magnetosphere?
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Questions

Questions that can be answered by simulation:

@ From first principles, what will actually happen if we launch a twist
into the magnetosphere?

@ Is there a well-defined hotspot? Does it shrink with time?

@ What sets dissipation rate, and timescale of the shrinking hotspot?

@ Where are particles accelerated and where are pairs created to
conduct the current? Are there localized “gaps” similar to those in

pulsars?
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|
Particle-in-Cell (PIC) Simulation

@ Use meta-particles to approximate a , AN
distribution function - é

o Fields are discretized on a mesh grid l

@ Meta-particles move inside the grid \ D)

cells \“/J:_)
@ Interpolating particle motion to the K&
grid gives the discretized current

@ Use the current to evolve the fields
with Maxwell equations
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-
Aperture

APERTURE stands for: Aperture is a code for Particles, Electrodynamics,
and Radiative Transfer at Ultra-Relativistic Energies, featuring:
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-
Aperture

APERTURE stands for: Aperture is a code for Particles, Electrodynamics,
and Radiative Transfer at Ultra-Relativistic Energies, featuring:

High order finite difference schemes and particle form factors
Esirkepov charge conserved current deposition

Boris / Vay particle pusher

Semi-implicit field update

Curvilinear grid

Pair creation / photon tracing

First written in CUDA on Nvidia GPUs, then ported and parallelized
on large CPU clusters

® 6 6 6 o o o
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-
Aperture

Pushing particles in curvilinear coordinates
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Pulsar Simulations

Pulsar simulation using Aperture (Chen & Beloborodov 2014)
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N
Model for Pair Production

Magnetic conversion Photon collision
e” +et e” +et

e

To emulate photon collision, we assign a random free path to photons and
have them convert at the end of the free path
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-
Two Types of Pulsars
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Numerical Challenges

@ Pair creation can introduce vast load difference between nodes,
slowing down the simulation by a factor of = 1000.

@ Excessive local charge density may also decrease plasma skin depth,
certain regions may become unresolved

@ In order to help with load balancing, we:

o Annihilate pairs when local number of particles exceeds a given
threshold

e Dynamically assign duplicate nodes onto the same coordinate patch to
help with particle calculation
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Difference between Pulsars and Magnetars

@ Pulsar activity is powered by its rotation, while magnetar activity is
powered by the energy injected into the magnetic field

@ Pulsar activity mainly happens on open field lines, whereas magnetar
activity happens on closed field lines close to the star

o Different mechanisms for pair creation, which is directly reflected in
numerical implementation

@ Particles interact differently with background radiation
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Magnetar Simulation
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-
Equatorial Gap

Location of nonzero E - B

20
16

12

. Chen (Princeton) Nordita, Stockholm Aug 31 18 / 27



Expansion of Current Cavity
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Twist Evolution

Twist angle 9 at different time slices
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-
Energy Evolution

Energy is ultimately converted to particle kinetic energy and eventually
advected into the star, since our simplified model is not radiative
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Overall voltage along the field lines is controlled by the threshold voltage
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Resonant Scattering

In magnetar magnetosphere, resonant scattering of thermal X-ray photons
is the main interaction between radiation and plasma

keV

Lab frame Electron frame

In the lab frame, resulting photon energy is upscattered by a factor of +2.
Photon becomes capable of pair creation. Pair creation threshold depends
on local B.
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Resonant Drag

Resonant scattering also applies an effective drag force on particles
1
F(p) =D(b,©) 5 (P — p))

@ The force will push particles toward a “preferred” velocity along
magnetic field lines

@ In a certain region, particles will be stopped by the radiation force
around the equator
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Resonant Drag

Resonant drag with test particles
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Simulation with Resonant Drag
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-
Over-twisted Magnetosphere

When the twist angle becomes larger than some critical angle ¥, the

behavior of the j-bundle changes qualitatively. Untwist happens violently
via reconnection.
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Would be interesting to study the reconnection!

A.Y. Chen (Princeton) Nordita, Stockholm

Aug3l 26 /27



Summary

@ PIC method has proved to be extremely useful in understanding the
pulsar magnetosphere

@ Same method can be applied to understand the twisted
magnetosphere of magnetars. We see the self-consistent formation of
a shrinking hotspot, and understand the first-principle evolution of
the magnetosphere

o By adding radiative interactions, more detailed structure of the
magnetosphere can be studied, potentially revealing the mechanism of
hard X-ray emission
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