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Quantum tunneling driven by three-body scattering in bosonic Josephson junctions

G. Pavlovic

We studied quantum dynamics of ultacold atomic gases in symmetric single-particle potential
with separated minima. Two level approximation for Bose-Einstein condensates is used modified
for effects due to two- and three- body particles interactions. Classical Hamiltonian in phase space
is derived in order to study time-evolution of inter-trap population imbalance and phase diference.

PACS numbers:

INTRODUCTION

B.D. Josephson predicted that there is a finite proba-
bility finding Cooper pairs on thin dielectric barrier link-
ing two superconductors[1]. Both non-stationary and sta-
tionary quantum tunneling are observed [2] depending if
the sandwich system (Josephson junction) is biased to an
external voltage or not. Superfluid Helium shows simi-
lar oscillation patterns [3]: there is formal analogy with
superconductors the voltage being replaced by pressure
exerted on the ends of small aperture connecting super-
fluids.

In Bose Einstein condensate (BEC) of atomic gases
leaked in double-well single particle potentials collective
quantum states formed in its local minima exchange par-
ticles as well by the tunneling effect [4]. Besides lin-
ear Josephson current non-linear transport develops in
the system of bosons when interaction energy increases,
eventually leading to macroscopic quantum self-trapping
(MQST) [5, 14]. Bosonic Josephson junctions of exciton-
polaritons, quasi-particles arising in strong coupling of
semiconductor excitons and confined photon mode[6, 7],
are considered [9–12] and recently experimentally re-
ported [13]. Polaritonic Josephson junctions demonstrate
in addition to the aforementioned anharmonicity (be-
ing consequence of two-particle scattering) and intrin-
sic Josephson-type dynamics related to polariton pseu-
dospin, i.e polarization degree of freedom [8].

In theoretical treatment of Josephson junctions of
cold atoms and polaritons one usually resort to two-
mode approximation postulating localized solutions of
Schr odinger equation for adjacent wells but neglecting
interactions [14]. Many-body-effects are included then
by standard time-dependent Gross-Pitaevskii equation
(GP) for a given Josephson-type potential [5, 14]which
long-range order parameter is taken sum of the two lo-
calized modes. The postulated modes are not eigenstates
of the system but overlap, allowing constant coupling of
particles seating in different traps. This is reasonable ap-
proximation as far as the BEC density is low [15]. With
the interactions becoming non-negligible in the junction,
instead starting from ordinary Schrdinger equation it
is necessary [16, 17] to consider steady-state solutions
of Schr odinger equation with cubic non-linearity (GP
equations) in the first step of the formalism. The cubic

term accounts for two-body contact interactions becom-
ing significant in magnitude. In the low interaction limit
the last approach called variational tunneling method
(VAT)[16] corrects the initial model in making tunnel-
ing parameter a function of instantaneous values of phase
and population difference between traps.

BEC of high densities was engineered on microfab-
ricated magnetic trap (2 − 3 × 106 atoms [18]) or in
one-dimensional 87Rb Bose gas waveguide [19]. Stabil-
ity of BECs is maintained against matter-wave collapse
in these experiments. Notwithstanding the predictions
of GP theory, fails of long-range order parameter sur-
passes na3 ≈ 10−3 bound, where n is the condensate
density and a is s-wave scattering-length [15]. Increase
in the number of atoms per unit volume inevitably leads
to three-body contact interaction of atomic species as
probabilities of scattering increase [20, 21]. In the former
reference authors extended GP model with an effective
potential depending on the square of the density (quin-
tic term) to account for three-body scattering. Their
repulsiveness cancels attractive interactions of two-body
scattering leading to the stability and preservation of co-
herent properties of BEC. This kind of stability is well
known for an other phenomenon: dissipative solitons [22],
if optical pumping in the system matches losses due to
recombination processes. It is also known that in BEC
of 87Rb atoms imaginary part representing recombina-
tion is three to four orders of magnitude lesser then the
real one being three-body scattering energy [21] provid-
ing long coherence time during which integrability can
be assumed [23].

In this article we have studied Josephson junction of
BEC of cold atoms focusing on the effect of three-body
scattering on tunneling current. Expanding long-range
order parameter of the total system on symmetric and
antisymmetric basis we derived classical Hamiltonian in
terms of standard variables: population imbalance and
phase difference between traps. We apply Lagrangian
formalism using appropriate non-linear constrain for the
situation we studied motivated by VAT technique used in
the reference [16]. Phase diagrams clearly shows appear-
ance of new tunneling regimes associated with three-body
scattering. Full second quantization Hamiltonian is de-
rived perturbatively in terms of angular momentum, i.e
su(2) algebra. We discussed occurrence of Shapiro reso-



2

nances when the tunneling energy equals one due to quin-
tic nonlinearities. Realistic system properties are consid-
ered based on present experimental facilities.

MODEL

As we consider spatially homogenous quantum trans-
port we reduce to 1+1 dimensional space for the order
parameter Ψ = Ψ(x, t) normalized to total number of
atom

∫
R

dxΨ = N . It obeys following Lagrangian

L =
i~
2

(Ψ∗ ∂Ψ
∂t
−Ψ

∂Ψ∗

∂t
)−H, (1)

with Hamiltonian of the effective potential consisting of
the double-trap external potential V (x) and the cubic-
quintic nonlinearities

H =
~2

2m
|∇Ψ|2 + (V (x) +

g2
2
|Ψ|2 +

g3
3
|Ψ|4)|Ψ|2 (2)

g2 and g3 are s-wave scattering length dependent interac-
tion strengths [21]. Variating eq.(1) with respect to dual
of the order parameter Ψ∗ one immediately obtain GP
equation with quintic term. To study tunneling effect we
decompose

Ψ(x, t) = α+(t)Ψ+(x) + α−(t)Ψ−(x) (3)

where symmetric (+) and antisymmetric (−) states being
linear combinations of localized eigenstates of double-well
potential Ψ± = (1/

√
2)(Ψ1 ±Ψ2) participate with α±(t)

complex coefficients. They are taken to fulfill

E±|Ψ±|2 =
~2

2m
|∇Ψ±|2+(V (x)+

g2
2
|Ψ±|2+

g3
3
|Ψ±|4)|Ψ±|2.

(4)
with proper energies E±. Plugging eq.(3) the Hamilto-
nian (2) after averaging over spatial coordinate becomes

〈H〉 =
1
2
µ+−γ1 + |α±|2(E± −

1
2
µ±± −

1
3
ν±∓ +

1
3
ν±∓γ2)

+ |α±|4
1
2
µ±± + |α±|6

1
3
ν±±, (5)

with summing over all repeated subscripts. The overlap
integrals of the real valued modes are defined as

µij = g2

∫
R

dxΨ2
i Ψ2

j , (6)

νij = g3

∫
R

dxΨ4
i Ψ2

j , (7)

(i, j = +,−) and terms mixing complex expansion coef-
ficients reads

γl = a1l|α+α−|2 + a2lα
2
+α

∗2
− + a3lα

∗2
+ α

2
−, (8)

vectors al are a1 = (4, 1, 1) and a2 = (9, 3, 3). Relation
for expansion coefficients of total wave function to basis
of localized functions α1,2(t) = |α1,2(t)| exp(iθ1,2(t)) =
(1/
√

2)(α+(t) ± α−(t)) with help of standard variables
in Josephson junctions physics: population imbalance
z(t) = (|α1(t)|2−|α2(t)|2)/N and phase difference φ(t) =
θ1(t) − θ2(t) map terms |α±|2 and α+α

∗
− figuring in eq.

(5) and eq. (8) to

|α±|2 =
N

2

(
1±

√
1− z2 cosφ

)
, (9)

α+α
∗
− =

N

2

(
z − i

√
1− z2 sinφ

)
. (10)

Higher degree terms of left hand side of eq. (9) and com-
plex conjugate and its powers of eq. (10) can be easily
deduced from the last expressions thus the Hamiltonian
(5) transforms to

〈H〉 =
A+B2

2
z2 +

3∑
m=0

Bm

(
1− z2

)m/2
cosm φ (11)

with coefficients per number of particles

2A
N

=
N

4

(
23
2
µ+− − µ

)
+
N2

4

(
39
2
νS − ν

)
, (12)

2B0

N
= (E+ + E−) +

1
2

(
N

2
− 1
)
µ (13)

1
3

(
N2

4
− 1
)
ν +

N

8
(NνS + µ+−) , ,

in difference with cubic nonlinearity case Bl becomes
function of population imbalance

B1(z) = B
′

1 +B
′′

1 z
2, (14)

2B
′

1

N
= ∆E− 1

2
∆µ− 1

3
∆ν+

N

2

(
∆µ+

N

2
∆ν +

N

4
∆νA

)
(15)

2B
′′

1

N
=

19N2

8
∆νA, (16)

2B2

N
=
N

4

(
µ− 1

2
µ+− +N

(
ν − 1

2
νS

))
, (17)

2B3

N
=
N2

12
(∆ν − 3

2
∆νA). (18)
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∆E = E+ − E−, ∆µ = µ++ − µ−−, ∆ν = ν++ −
ν−−,µ = µ+++µ−−,ν = ν+++ν−−, νS = 1

2 (ν+−+ν−+),
∆νA = 1

2 (ν+− − ν−+) ,

〈H〉 =
A

2
z2 +B1(z)

(
1− z2

)1/2
cosφ+

3
4
B3

(
1− z2

)3/2
cosφ

(19)
1
2
B2

(
1− z2

)
cos 2φ+

1
4
B3

(
1− z2

)3/2
cos 3φ+B0 +

1
2
B2,

ż = −B1(z)
(
1− z2

)1/2
sinφ− 3

4
B3

(
1− z2

)3/2
sinφ

(20)

−B2

(
1− z2

)
sin 2φ− 3

4
B3

(
1− z2

)3/2
sin 3φ,

φ̇ = −Az +B
′

1z
(
1− z2

)−1/2
cosφ+ (21)

−B
′′

1

(
2− 3z2

)
z
(
1− z2

)−1/2
cosφ

+
3
2
B3z

(
1− z2

)1/2
cosφ+B2z cos 2φ

+
3
4
B3z

(
1− z2

)1/2
cos 3φ,
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