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INTRODUCTION: BELAVIN-POLYAKOV SOLITONS

The two-component fields are represented by vector

ψ =


 ψ1

ψ2


 (1)

The components ψ1,2 may be written as ψ1,2 =
√

(N1,2)z1,2, where N1,2 = ψ1,2†ψ1,2and

z1,2 = z1,2(x, y, t) are complex numbers. In what follows we consider N1,2 = N = const.

Then we have ψ =
√

Nζ, where

ζ =


 z1

z2


 , (2)

with the normalization condition z1z1 + z2z2 = 1.
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FIG. 1: a) Poincaré sphere with ~n = (nx, ny, nz) in the point (x′, y′) representing the quantities

defined in eq. (3); b) Tangent plane T(x′,y′)S
2 from which the condition eq. (8) between a vector

~n and their derivatives may be read off.
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We next make transformation

nsi = nsi(x, y) = ζ†τ siζ, (3)

where τsi
, with si = x, y, z, are the usual Pauli matrices. For the components of the vector

~n = (nx, ny, nz) hold
∑

si
(nsi)2 = 1. The transformation is a mapping from a complex plane

to a 2-sphere, that is, ~n : R2 → S2. The sphere described by the tip of the vector ~n can be

identified with the Poincaré (or Bloch) sphere. The points in the Poincaré sphere may be

interpreted as pseudo-spins [8]. Figure 1 describes the above statements.

Now, we follow the discussion in [9] and take following boundary condition

lim
ρ→∞

n(x, y) = (0, 0, 1). (4)

for ρ =
√

x2 + y2. Direct consequence of (4) is possibility of compactification from R2 to S2

(we consider only one chart of the atlas)

~ni : S2 → S2. (5)

All mappings defined by 5 form configuration space: Q = {~ni}. As homotopy group of

configuration space π1(Q) is isomorphic to homotophy group π2(S
2)

π1(Q) = π2(S
2) = Z (6)

it is itself union of homotopy classes QNi

Q =
⋃
Ni

QNi
. (7)

A class is determined by Ni ∈ Z which is degree of the mapping ~ni : Ni = deg(~ni).

At a fixed point on the Poincaré sphere (x′, y′) ([1]) (see figure 1b and expression (9))

∂αns1(x, y) = εαβεs1s2s3n
s2(x, y)∂βns3(x, y) (8)

which means fixing covariant derivative Dα (α = x, y are now coordinates of tangent plane),

i.e. demanding parallel transport on a curve on the sphere

Dα~n(x, y) ≡ ∂α~n(x, y)− εαβ∂β~n(x, y)× ~n(x, y) = 0. (9)

The field ζ in terms of nsi reads ([6]) in circular polarization basis

ζ =
1√
2



√

1 + nz

nx+iny√
1+nz


 . (10)
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Comparing last vector with (1) one sees that z1 =
√

1 + nz and z1z2 = (nx + iny).

In what follows we chose polar coordinates for local field ζ = ζ(x, y) = ζ(r cos φ, r sin φ).

From the other side ~n = (sin Θ cos Φ, sin Θ sin Φ, cos Θ) where Θ = Θ(r, φ) and Φ = Φ(r, φ)

are global coordinates corresponding to polar and azimuthal angles of Poincaré sphere.

Hence

ζ =


 cos Θ

2

sin Θ
2
eiΦ


 . (11)

Belavin and Polyakov showed that equality (8) implies Cauchy-Riemann conditions on

complex function u = z2/z1

∂ru = − i

r
∂φu. (12)

In global coordinates u = tan Θ
2
eiΦ giving

dΘ

sin Θ
= −(

Ni

r
+ i

dΦ(r)

dr
)dr (13)

where we used

Φ(r, φ) = Niφ + Φ(r). (14)

M being topological charge and Θ = Θ(r) .

1)Standard 2D Belavin-Polyakov solitons ([9]) are then solution of (13) for Φ(r) = Φ0

Θ(r) = 2 arctan

(
rNi

R

)
. (15)

where R is constant describing soliton radius. One can check that lim
r→0

Θ(r) = 0 and

lim
r→∞

Θ(r) = π (a meridian on Poincaré sphere) which are necessary conditions for Belavin-

Polyakov soliton ([12]).

2)Another kind of solution exists if Φ(r) varies with r.

Φ(r, φ) = Niφ + Φ(r). (16)

and this topic will be considered in the next section.

SOLITONS ON TORUS: NLSE(GP) EQUATION

The fundamental group of the torus S1 × S1 is Z
⊕
Z, which is abelian, so its covering

spaces are in 1 - 1 correspondence with the subgroups of this group, namely with pZ
⊕

qZ,
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p, q = 0, 1, 2, 3, . . .. These covering spaces are tori, if p, q > 0, cylinders, if p = 0 or q =

0 but not both, or R2 if p = q = 0. The solutions of the form (16) will be appropriate for

the second case.
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