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Context

Context: a survey

• 2015: SYK: disordered condensed matter system of N Majorana fermions

H = −
∑

1≤i<j<k<l≤N

Jijklχiχjχkχl

{χi , χj} = δij
〈
J2
ijkl

〉
=

3!

N3
J2

- solvable at large N,
- presents black hole features (approximate conformal symmetry and maximal

chaos, at strong coupling)

→ simplest model of holography (nAdS2/nCFT1)

→ raised many variants (condensed matter, susy,...)

• 2016: [’16 Witten] A non-disordered quantum model obeys the same leading
order Schwinger-Dyson equations as SYK, allegedly with a clearer
holographic dual. It was inspired by tensor models.
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What are Tensor Models? Predecessors

Predecessors

Vector models:

Z(g) =

∫
Dφ e−

1
2
φ2− g

4!N
φ4

([’03 Moshe et Zinn-Justin] for a review)

Geometry of branched polymers (fractal trees).
[In d = 3 (N = 1) dual to 3d Ising at Tc and d ≥ 2 to higher-spin theory in AdSd+1.]
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What are Tensor Models? Predecessors

Predecessors

Matrix models:

Z(g) =

∫
DMDM† e−

1
2

Tr |M|2− g

3!
√

N
Tr |M|3

=
∑
h

N2−2hZh(g)

[’81 Polyakov, ’86 Kazakov, ’88 David, ’16 Miller, Sheffield, ...]

([’93 DiFrancesco et al] for a review)

Geometry of planar graphs.
[Discretization of 2d Liouville theory and its continuous limit (double scaling) is the Brownian
map.]
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What are Tensor Models? Aim and Tools

Tensor models: Aim and Tools

Tensor models: most obvious attempt to quantize gravity in higher dimensions.
But first attempts [’91 Ambjorn et al., ’92 Boulatov, etc.] were plagued by singular
manifolds and didn’t have a large N expansion.
What brought the success?...

Colors!

The field: Ta1...aD rank D (unsymmetrized) tensor, transforms under G⊗D (G
of rank N):

T ′b1...bD =
∑
a

U
(1)

b1a1 . . .U
(D)

bDaD
Ta1...aD , U(i) ∈ G .

Index stands for (discretized) space or is an abstract dof.

Action and Observables: G⊗D -invariants (“bubbles”).
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What are Tensor Models? Aim and Tools

Tensor invariants as Colored Graphs

Example (D = 3), G = U(N)∑
δa1p1δa2q2δa3r3 δb1r1δb2p2δb3q3 δc1q1δc2r2δc3p3

Ta1a2a3Tb1b2b3Tc1c2c3 T̄p1p2p3 T̄q1q2q3 T̄r1r2r3

White (black) vertices for T (T̄ ).

Edges for δacqc colored by c, the
position of the index.

a1a2a3T

b1b2b3T

c1c2c3T

Tp1p2p3

Tr1r2r3

Tq1q2q3
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What are Tensor Models? Aim and Tools

Tensor invariants as Colored Graphs

Example (D = 3), G = U(N)

TrB(T , T̄ ) =
∑∏

v

Ta1
v ...a

D
v

∏
v̄

T̄q1
v̄ ...q

D
v̄

D∏
c=1

∏
ec=(w,w̄)

δacw qcw̄

White (black) vertices for T (T̄ ).

Edges for δacqc colored by c, the
position of the index.

T

T

1

2

3

1

3
2

2

1
3

1

2

2

2

1

1

3

1

2

1

1

2

2

3 3

3

1

2

2

3 1

3
2

3

1
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What are Tensor Models? Aim and Tools

Single trace models

The action:“single trace” invariant

S(T , T̄ ) =
∑

Tb1...bD T̄q1...qD

D∏
c=1

δbcqc︸ ︷︷ ︸
unique quadratic invariant

+
∑

connected graphs B
with D colors

tB TrB(T , T̄ )

︸ ︷︷ ︸
interaction

The partition function:

Z(tB) =

∫
[dT̄dT ] e−ND−1S(T ,T̄ )

The gauge invariant observables:

TrB(T , T̄ )

Objective: compute logZ ,
〈
TrB1 (T , T̄ ) . . .TrB2 (T , T̄ )

〉
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What are Tensor Models? Aim and Tools

Feynman expansion

S(T , T̄ ) =
∑

Tb1...bD T̄q1...qD

D∏
c=1

δbcqc +
∑

connected graphs B
with D colors

tB TrB(T , T̄ ) ,

Z(tB) =

∫
[dT̄dT ] e−ND−1S(T ,T̄ )

Feynman expansion:

• Taylor expand in tB → graphs with D colors

• compute the Gaussian integrals (Wick theorem) → graphs with D + 1
colors

T

T

1

2

3

1

3
2

2

1
3

1

2

2

2

1

1

3

1

2

1

1

2

2

3 3

3

1

2

2

3 1

3
2

3

1

T

T

1

2

3

1

3
2

2

1
3

1

2

2

2

1

1

3

1

2

1

1

2

2

3 3

3

1

2

2

3 1

3
2

3

1

0

Z(tB) =
∑∫

T ,T̄

e
−ND−1

(∑
T
b1...bD

T̄
q1...qD

∏D
c=1 δbc qc

)
TrB1 (T , T̄ ) TrB2 (T , T̄ ) . . .

Each graph G is embedded in a D dimensional space
(Poincaré dual to a triangulation)
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(Poincaré dual to a triangulation)
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(Poincaré dual to a triangulation)
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What are Tensor Models? Aim and Tools

Colored graphs and vertex colored triangulations

White and black D + 1 valent vertices connected by edges with
colors 0, 1 . . .D.

1
1

3

2 2

0 0

Vertex ↔ D simplex with
colored vertices .

3

1
2

0

Edges ↔ gluings along D − 1
simplices respecting all the
colorings

3

Invariants TrB: graphs with D colors ↔ D − 1 dimensional boundary
triangulations.

1

2
3
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What are Tensor Models? Important results

The 1/N expansion

Gurau’s degree: Choose an order of the D + 1 colors, this gives a ribbon graph
(“jackets”), compute the associated genus (2− gJ = V − E + F ), then

ω =
∑
J

gJ and logZ =
∑
G

CGt
b(B)ND−ω(G)

Leading order (ω = 0): melons

Fundamental melon

0

1

2

3

Iterative insertions of 2 vertices connected
by D edges
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What are Tensor Models? Important results

Important results

2010: Colors lead to 1/N expansion, discretization of (pseudo- and)
piecewise-linear manifolds. [Gurau]

Single scaling limit [Bonzom et al., Gurau et al.] → branched polymers

2011: Universality [Gurau]

2012: Uncolored models [Bonzom et al.]

Asymptotically safe and free models [Ben Geloun et al., Carrozza et al.]

2013: Double scaling limit [Dartois et al.] → cherry trees

2016: Enhanced models: branched polymers, baby universes, Brownian map
[Bonzom] (and later [’17 Lionni] for many more bubble types)

2017: Melon dominance in irreps of O(N)3 tensor models [Gurau, Benedetti et al.,

Carrozza]

Nicolas Delporte (LPT Orsay, Université Paris-Sud) Holographic Tensor Models September 13, 2018 12 / 22



What are Tensor Models? Important results

Important results

2010: Colors lead to 1/N expansion, discretization of (pseudo- and)
piecewise-linear manifolds. [Gurau]

Single scaling limit [Bonzom et al., Gurau et al.] → branched polymers

2011: Universality [Gurau]

2012: Uncolored models [Bonzom et al.]

Asymptotically safe and free models [Ben Geloun et al., Carrozza et al.]

2013: Double scaling limit [Dartois et al.] → cherry trees

2016: Enhanced models: branched polymers, baby universes, Brownian map
[Bonzom] (and later [’17 Lionni] for many more bubble types)

2017: Melon dominance in irreps of O(N)3 tensor models [Gurau, Benedetti et al.,

Carrozza]
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Nicolas Delporte (LPT Orsay, Université Paris-Sud) Holographic Tensor Models September 13, 2018 12 / 22



What are Tensor Models? Important results

Important results

2010: Colors lead to 1/N expansion, discretization of (pseudo- and)
piecewise-linear manifolds. [Gurau]

Single scaling limit [Bonzom et al., Gurau et al.] → branched polymers

2011: Universality [Gurau]

2012: Uncolored models [Bonzom et al.]

Asymptotically safe and free models [Ben Geloun et al., Carrozza et al.]

2013: Double scaling limit [Dartois et al.] → cherry trees

2016: Enhanced models: branched polymers, baby universes, Brownian map
[Bonzom] (and later [’17 Lionni] for many more bubble types)

2017: Melon dominance in irreps of O(N)3 tensor models [Gurau, Benedetti et al.,

Carrozza]
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2017: Melon dominance in irreps of O(N)3 tensor models [Gurau, Benedetti et al.,

Carrozza]
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Holographic TM Lessons so far

The main models:

• Gurau-Witten: ψi (0 ≤ i ≤ D) real fermions of rank D

SGW =

∫
dt

(
i

2

∑
i

ψi
d

dt
ψi −

i (D+1)/2j

ND(D−1)/4
ψ0ψ1 · · ·ψD

)
Symmetry group: O(N)D(D+1)/2

• Carrozza-Tanasa-Klebanov-Tarnopolsky: ψ real fermion of rank D

SCTKT[ψ] =

∫
dt

(
1

2
ψabc∂tψabc +

λ

4N3/2
ψa1a2a3ψa1b2b3ψb1a2b3ψb1b2a3

)
.

Symmetry group: O(N)D
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Holographic TM Lessons so far

Their main features:

• cSYK and GW present different subleading structures [’17 Bonzom et al]

Same graphs but contributing at different orders, because faces are counted
differently (indexed by loops or by Gurau’s degree respectively).
Example:

i1

i1

i2 i2

i3

i3

0

0

0

i1i1

i2 i2

i3

i3

0

0

0

Those are not distinguished by cSYK, but well by GW.
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Holographic TM Lessons so far

Their main features:

• Bilocal effective action
In order to study fluctuations around the conformal solution and path the
way towards a holographic interpretation (e.g. “collective field theory”),
[’18 Benedetti et al.] introduced 2PI effective action (below for a scalar field):

W [J,K ] = log

∫
Dϕ exp

(
−S [ϕ] + Jaφa +

1

2
φaKabφb

)
,

Γ[φ,G ] =−W [J,K ] +
δW

δJa
Ja +

δW

δKab
Kab

=−W [J,K ] + Jaφa +
1

2
φaKabφb +

1

2
GabKab,

Φa[J,K ] =
δW

δJa
[J,K ] Gab[J,K ] =

δ2W

δJaδJb
[J,K ],

For G−1
0 = δ2S

δφ2 , expanding the functional integral defining Γ around the

classical saddle ϕ = φ+ f (obeying Γ[φ,G ] = S [φ]), we get:
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Holographic TM Lessons so far

Their main features:

Γ[φ,G ] = S [φ] +
1

2
Tr
[
logG−1

]
︸ ︷︷ ︸
quadradic terms in f

+
1

2
Tr
[
G−1

0 G
]

+ Γ2[φ,G ]︸ ︷︷ ︸
generating function of 2PI graphs

.

Then, study equations of motion of φ and G through a 1/N expansion keeping
the relevant graphs.

- CTKT: (with ansatz ψ = 0)

Γ[0,G ] = −1

2
Tr
[
logG−1

a1a2a3b1b2b3

]
− 1

2
Tr
[
∂tGa1a2a3b1b2b3 (t, t′)

]
+ Γ2

Γ2 =
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Holographic TM Lessons so far

Their main features:

Using the ∂t as a O(N)3-breaking term, they reparametrize around the saddle Ḡ

Gab = eHac Ḡcde
Hdb

Hab = H
(1)
a1b1

δa2b2δa3b3 + (perm) eH
(i)

∈ O(N)

and find an effective σ-model

Γ[0,H] = −α
2

∫
dt ∂tHac(t)∂tHac(t)

→ 3
2
N2 additional light modes to SYK.

- GW: (same ansatz ψ = 0) leads to similar analysis

→ D(D+1)
4

N2 additional light modes to SYK.
[And up to NNNLO, 2PI graphs resum as Tr log-terms, hence interpreted as one-loop gaussian
integrals.]
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Holographic TM Lessons so far

Their main features:

• Group invariants

They enter the action and constitute the observables. (The building blocks
are single-trace.)

- Vector models: (φiφi )
- Matrix models: Tr(Mn)
- Tensor models: asymptotically (2k)-vertices ∼ k! (for bosons and fermions)

[’13 Ben Geloun et al, ’17 Beccaria et al, Itoyama et al, de Mello Koch et al,

Bulycheva et al]

Example: 8-vertices (gauge invariant) operators
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Holographic TM Lessons so far

Their main features:

→ [’17 Beccaria et al., Minwalla et al., Bulycheva et al.] from the growing of invariants
(computing the partition function) and [’17 Minwalla et al.] from the
thermodynamical study of mass-deformed CTKT, they motivate a Hagedorn
temperature ∼ 1/ logN.

• At finite N, tentatives to better understand the spectral distribution:

- Numerical studies of the spectrum seem to present “dip-ramp-plateau”
structure [’17,’18 Krishnan et al.] (But N = 2...)

- Analytic bounds on the spectral range suggest a denser spectral density
than in SYK [’18 Klebanov et al.]
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Holographic TM Extensions

Extensions:

• Higher dimensions: ”Tensor field theories”
For bosonic and fermionic models, ranges of dimensions are found without
complex conformal dimensions of the bilinears (eg. “prismatic” theories)
(bosons: [’17, ’18 Klebanov et al.], fermions: [’17 Benedetti et al., Prakash et al.])

→ CM-like propagator to the tensors? [’17 Ben Geloun et al, ’18 Cai et Ge]

→ coupling (tensor?) fermions to tensor bosons (CFTs?): new quantum
phase transitions?
→ gauging those symmetries?

• Dual to richer higher spin theories? [’18 Vasiliev]
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Nicolas Delporte (LPT Orsay, Université Paris-Sud) Holographic Tensor Models September 13, 2018 20 / 22



Holographic TM Extensions

Conclusion: connections

Quantum 
Gravity

Random 
Geometry

AdS/CFT

Tensor Models

SYK

MelonsCondensed Matter
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Holographic TM Extensions
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