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Introduction to the Mott loffe Regel limit

e The Mott-loffe-Regel (MIR) limit [cf. loffe & Regel 60] upper
bounds the scattering rate:

Mean free path lower bound: /e > a (1)
Scattering rate upper bound: [scatt(Imfp) < Tscart(a) (2)

where /4, is the the mean free path.
e Therefore, the MIR limit upper bounds the resistivity p ~ [ scart!
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Figure: Conventional metals have a resistivity p that saturates below the
MIR limit [cf. Gunnarsson et al. 05]



Introduction to bad metals
e Bad metals have resistivities which increase with temperature
above the MIR limit.
e Bad metals are frequently found in strongly correlated systems
(ex. normal state of high- T, superconductors)
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Figure: Bad metals have resistivity p increase well above the MIR limit.



Past theoretical and numerical approaches to bad metals

e Most work to understand bad metals fall under the categories of:
— large-N expansions,

— dynamical mean field theory (DMFT),

— quantum Monte Carlo (QMC)

e Our objective: We want a realistic, yet solvable, model for bad
metals that avoids introducing artificial control parameters.



Perturbative treatment of the Hubbard model, t < U

e Quasiparticles are ill-defined, so working with itinerant electrons
in momentum space is unnatural.

e Let’s work with the polar opposite of Fermi liquid theory, where
e-e interaction energies are much larger than the hopping:

H = H: + Hy, (3)

Ht =t Z C,'TSCjS7 (4)
(iJj)s

HU = UZ nisnjy, (5)

limit: t < U, kT (6)

e Can we do perturbation theory in the hopping t?



Hubbard model at low-t

e Perturbation theory in t is trivially tractable:
— The thermal ensemble lies in the occupation number basis

e Pt n e BHU (7)
— All sites are uncorrelated
z=7N (8)

where z is the single site partition function.
e An analytically tractable model for a strongly correlated electron
system is rare. What can we calculate?



Hubbard model at low-t: transport and thermodynamics

e All conductivities diverge:

o(w) = Dod(w) + > Did(w + U), (9)
+
Do(n, T) o t;n(2 —n)for T > U (10)

e Thermodynamics show symptoms of massive energy degeneracy:

Schottky anomaly: c, = (8U)%e Y, (11)
Compressibility diverges: y — oo for T — 0 (12)

e Hy is hugely degenerate! The perturbation theory is sick.
e Can we resolve the degeneracy while keeping the model solvable?



Introduce interactions between different sites

e Add an interaction term that can resolve the degeneracies:

H = H; + Hy + Hy, (13)

Hy =Y V(i = jl)ninj, (14)
(i)

t< T,U,V (15)

e The thermal ensemble lives in the occupation number basis {n;}:

Thermal probability distribution: 7 & Z (16)

e Classical Monte Carlo can easily generate a representative
thermal ensemble for us!



A typical configuration in the thermal ensemble

e In numerical simulations: V(r) = Ve="/!, | =2a and V = 0.1U
e The single-particle energy due to interactions is

eis = Unj s+ V(li = jl)n;. (17)
i

e The massive degeneracy has been lifted. We can now safely work

. . t
perturbatively in +.

Figure: Upper left: state configuration (n=0.62, kT=0.5). Lower left:
on-site potentials €;;. Right: histogram of ¢y



Transport equations

e The Kubo formula in our perturbative-in-t model reduces to:

—B(Egny—uN)

Reo(w) ~ €*t? Z Z Ais(w) +O(tY), (18)

Ajs(w) = 6(w — (Ei,s — 6/-1,5))17;—1,5(1 — i)+ (19)

e Ajs(w) can be calculated from €5 and njs in
classical MC!

e Transport is controlled by local hops! DC
conductivity comes from hops at resonant spots
where €is — €—-1s — 0




A bad metal with linear-in-T resistivity
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o Why does p ~ T ? Why is this a bad metal? Is this just classical,
infinite temperature physics?

e A simple model allows us to answer these questions!



Two bad metallic phases [cf. Perepelitsky et al. 16]

e Charge undergoes diffusive transport.
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e There is an infinite temperature (T > U) and an intermediate

temperature (t < T < U) bad metallic phase!
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Figure: Left: Inverse charge diffusion D(_Thl(T). Right: Inverse charge
compressibility x~1(T) for fillings n = 0.25,0.5,0.75,0.9.




Source of linear-in-T resistivity
e For temperatures kg T >> t, the kinetic energy K.E. ~ %

e The resistivity
PR (21)
D T
where D ~ K.E. is the “Drude weight" of the central conductance
peak, and 7 is the transport lifetime.
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Figure: Left: inverse Drude weight, Right: inverse current lifetime, I'cy,.



Transport through an effective disorder landscape

e A toy picture of transport will help us understand the bad metal

e |et's call this map an effective
disorder landscape.

o T -;
e The disorder landscape changes adiabatically slowly:

h

time for an electron to hop: ~ " (22)
h

time for current to decay:  ~ U’ (23)
h _h

landscape changes very slowly: " > U (24)

e Any local current decays rapidly.



Non-quasiparticle transport and bad metals

e The MIR argument does not apply for non-QP transport. The
theoretical challenge is understanding the physical source of this
non-QP transport.

e In our model: The electrons want to Anderson localize because
they're in strong disorder! They can’t because the disorder
landscape is (slowly) dynamical.

e One possible direction to look for more theoretical models for
bad metals is to look for a “failed” insulator!



Comparison with Quantum Monte Carlo
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e [E. Hwang and coworkers| ran QMC simulations of the Hubbard
model with U = 6t and t' = —0.25t.



Comparison with cold atoms experiment
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Comparison with strongly correlated thermoelectrics

e Our model exhibits :

— large thermopower |S| = % = O(k?B),

— small Lorenz ratio L = %,

— large thermoelectric figure of merit zT = 5L2.

e Vanadium dioxide VO, [cf. Lee et al. 17] is a bad metal with

linear-in-T resistivity and the same thermoelectric properties.

Figure: Left: Thermopower S vs kg T, Right: contour plot of the Lorenz
ratio L



Connection with other theoretical models

e Most theoretical work on bad metals utilizes a large-N
approximation (ex. coupled SYK sites, electron-phonon models,
DMFT).

e While large-N is a calculational tool, it also introduces an
interesting physical feature — an inert bath to decay momentum
rapidly.

e In our model, each electron interacts with a large number of
nearby, nearly static electrons through Hy. These electrons act like
an inert bath, forming a disorder landscape to rapidly degrade
current.



Conclusions

e We have a simple, solvable model for a bad metal, with electrons
hopping locally through an effective interaction-induced disorder
landscape. It behaves like a “failed” insulator.

e Our theory agrees well with results from cold atom experiments,
Quantum monte carlo simulations, and strongly correlated
thermoelectrics like VOs.



