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Introduction to the Mott Ioffe Regel limit
• The Mott-Ioffe-Regel (MIR) limit [cf. Ioffe & Regel 60] upper
bounds the scattering rate:

Mean free path lower bound: lmfp > a (1)

Scattering rate upper bound: Γscatt(lmfp) < Γscatt(a) (2)

where lmfp is the the mean free path.
• Therefore, the MIR limit upper bounds the resistivity ρ ∼ Γscatt !

Figure: Conventional metals have a resistivity ρ that saturates below the
MIR limit [cf. Gunnarsson et al. 05]



Introduction to bad metals
• Bad metals have resistivities which increase with temperature
above the MIR limit.
• Bad metals are frequently found in strongly correlated systems
(ex. normal state of high-Tc superconductors)

Figure: Bad metals have resistivity ρ increase well above the MIR limit.
[cf. Gunnarsson et al. 05]



Past theoretical and numerical approaches to bad metals

• Most work to understand bad metals fall under the categories of:
→ large-N expansions,
→ dynamical mean field theory (DMFT),
→ quantum Monte Carlo (QMC)
• Our objective: We want a realistic, yet solvable, model for bad
metals that avoids introducing artificial control parameters.



Perturbative treatment of the Hubbard model, t � U [cf.

Mukerjee et al. 05]

• Quasiparticles are ill-defined, so working with itinerant electrons
in momentum space is unnatural.
• Let’s work with the polar opposite of Fermi liquid theory, where
e-e interaction energies are much larger than the hopping:

H = Ht + HU , (3)

Ht = t
∑
〈i ,j〉s

c†iscjs , (4)

HU = U
∑
i

ni↑ni↓, (5)

limit: t � U, kT (6)

• Can we do perturbation theory in the hopping t?



Hubbard model at low-t [cf. Mukerjee et al. 07, Beni et al 74]

• Perturbation theory in t is trivially tractable:
→ The thermal ensemble lies in the occupation number basis

e−βH ≈ e−βHU (7)

→ All sites are uncorrelated

Z = zN (8)

where z is the single site partition function.
• An analytically tractable model for a strongly correlated electron
system is rare. What can we calculate?



Hubbard model at low-t: transport and thermodynamics

• All conductivities diverge:

σ(ω) = D0δ(ω) +
∑
±

D±δ(ω ± U), (9)

D0(n,T ) ∝ t2

T
n(2− n) for T � U (10)

• Thermodynamics show symptoms of massive energy degeneracy:

Schottky anomaly: cn = (βU)2e−βU , (11)

Compressibility diverges: χ→∞ for T → 0 (12)

• HU is hugely degenerate! The perturbation theory is sick.
• Can we resolve the degeneracy while keeping the model solvable?



Introduce interactions between different sites

• Add an interaction term that can resolve the degeneracies:

H = Ht + HU + HV , (13)

HV ≡
∑
〈i ,j〉

V (|i − j |)ninj , (14)

t � T ,U,V (15)

• The thermal ensemble lives in the occupation number basis {nis}:

Thermal probability distribution:
e−βH

Z
≈ e−β(HU+HV )

Z
(16)

• Classical Monte Carlo can easily generate a representative
thermal ensemble for us!



A typical configuration in the thermal ensemble
• In numerical simulations: V (r) = Ve−r/l , l = 2a and V = 0.1U
• The single-particle energy due to interactions is

εis = Uni ,−s +
∑
j 6=i

V (|i − j |)nj . (17)

• The massive degeneracy has been lifted. We can now safely work
perturbatively in t

T .
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Figure: Upper left: state configuration (n=0.62, kT=0.5). Lower left:
on-site potentials εi↑. Right: histogram of εi↑



Transport equations

• The Kubo formula in our perturbative-in-t model reduces to:

Reσ(ω) ∼ e2t2
∑
{n}

e−β(E{n}−µN)

Z
∑
i ,s

∆is(ω) +O(t4), (18)

∆is(ω) = δ(ω − (εi ,s − εi−1,s))ni−1,s(1− ni ,s) + · · · (19)

• ∆is(ω) can be calculated from εis and nis in
classical MC!
• Transport is controlled by local hops! DC
conductivity comes from hops at resonant spots
where εi ,s − εi−1,s → 0



A bad metal with linear-in-T resistivity
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• Why does ρ ∼ T? Why is this a bad metal? Is this just classical,
infinite temperature physics?
• A simple model allows us to answer these questions!



Two bad metallic phases [cf. Perepelitsky et al. 16]

• Charge undergoes diffusive transport.

ρ ≈ 1

Dch
· 1

χ
. (20)

• There is an infinite temperature (T > U) and an intermediate
temperature (t < T < U) bad metallic phase!
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Figure: Left: Inverse charge diffusion D−1ch (T ). Right: Inverse charge
compressibility χ−1(T ) for fillings n = 0.25, 0.5, 0.75, 0.9.



Source of linear-in-T resistivity
• For temperatures kBT � t, the kinetic energy K .E . ∼ t2

T .
• The resistivity

ρ =
1

D
· 1

τ
(21)

where D ∼ K.E. is the “Drude weight” of the central conductance
peak, and τ is the transport lifetime.
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Figure: Left: inverse Drude weight, Right: inverse current lifetime, Γcurr



Transport through an effective disorder landscape

• A toy picture of transport will help us understand the bad metal

• Let’s call this map an effective
disorder landscape.

• The disorder landscape changes adiabatically slowly:

time for an electron to hop: ∼ ~
t

(22)

time for current to decay: ∼ ~
U
, (23)

landscape changes very slowly:
~
t
� ~

U
(24)

• Any local current decays rapidly.



Non-quasiparticle transport and bad metals

• The MIR argument does not apply for non-QP transport. The
theoretical challenge is understanding the physical source of this
non-QP transport.

• In our model: The electrons want to Anderson localize because
they’re in strong disorder! They can’t because the disorder
landscape is (slowly) dynamical.

• One possible direction to look for more theoretical models for
bad metals is to look for a “failed” insulator!



Comparison with Quantum Monte Carlo

• [E. Hwang and coworkers] ran QMC simulations of the Hubbard
model with U = 6t and t ′ = −0.25t.



Comparison with cold atoms experiment

• [P. Brown and coworkers] ran cold atom simulations of the Hubbard
model with U = 7.4t.



Comparison with strongly correlated thermoelectrics
• Our model exhibits :
→ large thermopower |S | = α

σ = O(kBe ),
→ small Lorenz ratio L = κ

σT ,

→ large thermoelectric figure of merit zT ≡ S2

L .
• Vanadium dioxide VO2 [cf. Lee et al. 17] is a bad metal with
linear-in-T resistivity and the same thermoelectric properties.
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Figure: Left: Thermopower S vs kBT , Right: contour plot of the Lorenz
ratio L



Connection with other theoretical models

• Most theoretical work on bad metals utilizes a large-N
approximation (ex. coupled SYK sites, electron-phonon models,
DMFT).
• While large-N is a calculational tool, it also introduces an
interesting physical feature – an inert bath to decay momentum
rapidly.
• In our model, each electron interacts with a large number of
nearby, nearly static electrons through HV . These electrons act like
an inert bath, forming a disorder landscape to rapidly degrade
current.



Conclusions

• We have a simple, solvable model for a bad metal, with electrons
hopping locally through an effective interaction-induced disorder
landscape. It behaves like a “failed” insulator.
• Our theory agrees well with results from cold atom experiments,
Quantum monte carlo simulations, and strongly correlated
thermoelectrics like VO2.


