Locality Bound for Dissipative Transport

arXiv: 1806.01859

Xizhi Han, Sean Hartnoll
Stanford University

August 23, 2018

Motivation

Lieb-Robinson Bound

Gorini-Kossakowski-Sudarshan-Lindblad Equation

Dissipative Lieb-Robinson, Operator Decay and Diffusion

Sketch of the Proof

Results and Future Work

References

Complexity of Quantum Many-body Physics

QMA-complete to determine the ground state energy (up to polynomial accuracy in system size) for

- general 2-local Hamiltonians
- the 2D Heisenberg model with local magnetic fields
- the 2D Hubbard model with local magnetic fields

Non-perturbative Solutions:

- Large N /Holographic theories
- Numerics
- Bounds from first principles
- ...

Review of Transport Bounds

Name	Bounded Quantity	Principle
Mazur-Suzuki	Drude Weight	QM
Mott-loffe-Regel	Resistivity	Uncertainty
Lieb-Robinson	Ballistic Velocities	Locality
Kovtun-Starinets-Son	Viscosity	Causality
Hartman-Hartnoll-Mahajan	Diffusivity	Causality

- How to describe locality more precisely?
- k-locality, spatial locality, ...

> ..

. $-$

Locality Bound for Diffusivity

Diffusion: for $t \gtrsim \tau_{\text {th }}$ and $|x| \gtrsim l_{\text {th }}$,

$$
\langle[n(t, x), n(0,0)]\rangle \propto \nabla^{2} \frac{e^{-x^{2} /(4 D t)}}{t^{d / 2}}
$$

Diffusivity bound:

$$
D \lesssim v^{2} \tau_{\mathrm{th}}
$$

A naive derivation (assuming $|\langle[J(t), J(0)]\rangle| \leq A\|J\|^{2} e^{-t / \tau}$)

$$
\sigma=\chi D=\int_{0}^{\infty} d t\langle[J(t), J(0)]\rangle \leq A\|J\|^{2} \tau
$$

Interesting to generalize to dissipative case

- Physics out of thermal equilibrium
- Decoherence
- Model for strongly correlated systems
- Dissipative Lieb-Robinson bound exists

Lieb-Robinson Bound

Theorem (Lieb and Robinson, 1972)
Consider a lattice of spins with a translationally invariant local Hamiltonian. There exists $A, v, a>0$, as functions of lattice geometry and the microscopic Hamiltonian, such that for any local operators O_{1} and O_{2} and spacetime positions (x, t),

$$
\left\|\left[O_{1}(x, t), O_{2}(0,0)\right]\right\| \leq A\left\|O_{1}\right\|\left\|O_{2}\right\| e^{(v t-x) / a}
$$

- Unitary dynamics with locally f.d. Hilbert spaces.
- At least exponential spatial locality of the Hamiltonian.
- $A \sim 1, v \sim J a, a \sim$ lattice spacing.

Lieb-Robinson Bound

$$
\left\|\left[O_{1}(x, t), O_{2}(0,0)\right]\right\| \leq A\left\|O_{1}\right\|\left\|O_{2}\right\| e^{(v t-x) / a}
$$

The Heisenberg chain as an example,

$$
H=-J \sum_{x}\left(X_{x} X_{x+1}+Y_{x} Y_{x+1}+Z_{x} Z_{x+1}\right) .
$$

Expand

$$
Z_{0}(t)=e^{i H t} Z_{0} e^{-i H t}=Z_{0}+i t\left[H, Z_{0}\right]-\frac{1}{2} t^{2}\left[H,\left[H, Z_{0}\right]\right]+\ldots
$$

so that the operator growth is manifest,

$$
\begin{aligned}
i\left[H, Z_{0}\right] & =-2 J X_{-1} Y_{0}-2 J Y_{0} X_{1}+2 J Y_{-1} X_{0}+2 J X_{0} Y_{1} \\
-\left[H,\left[H, Z_{0}\right]\right. & =-4 J^{2} Z_{0}+4 J^{2} Y_{-2} Z_{-1} Y_{0}-4 J^{2} Z_{-2} Y_{-1} Y_{0}+\ldots
\end{aligned}
$$

Lieb-Robinson Bound

$$
\left\|\left[O_{1}(x, t), O_{2}(0,0)\right]\right\| \leq A\left\|O_{1}\right\|\left\|O_{2}\right\| e^{(v t-x) / a}
$$

- Exponential clustering of correlations;
- Area law of entanglement (1d gapped system);
- Bound of sound velocities.

Lindblad Equation

Theorem (Choi-Kraus)
A map $\mathcal{N}_{A \rightarrow B}$ between finite-dimensional Hilbert spaces \mathcal{H}_{A} and \mathcal{H}_{B} is linear, completely positive, and trace-preserving if and only if it has a Choi-Kraus decomposition as follows:

$$
\mathcal{N}_{A \rightarrow B}\left(X_{A}\right)=\sum_{l} V_{l} X_{A} V_{l}^{\dagger}
$$

where $X_{A}: \mathcal{H}_{A} \rightarrow \mathcal{H}_{A}, V_{l}: \mathcal{H}_{A} \rightarrow \mathcal{H}_{B}$ and $\sum_{l} V_{l}^{\dagger} V_{l}=I_{A}$.

- Key Assumption: Markovian
- $V_{0}=I-(i H+K) \delta t+\ldots$ and $V_{l>0}=L_{x} \sqrt{2 \delta t}+\ldots$,

$$
\begin{aligned}
& \dot{\rho}=-i[H, \rho]+\sum_{x}\left(2 L_{x} \rho L_{x}^{\dagger}-L_{x}^{\dagger} L_{x} \rho-\rho L_{x}^{\dagger} L_{x}\right) \\
& \dot{O}=i[H, O]+\sum_{x}\left(2 L_{x}^{\dagger} O L_{x}-L_{x}^{\dagger} L_{x} O-O L_{x}^{\dagger} L_{x}\right)
\end{aligned}
$$

Diffusion and Operator Decay

$$
\dot{O}=i[H, O]+\gamma \sum_{x}\left(2 L_{x}^{\dagger} O L_{x}-L_{x}^{\dagger} L_{x} O-O L_{x}^{\dagger} L_{x}\right) \equiv \mathcal{L}[O]
$$

To zeroth order in $H(\gamma \gg 1)$, spectrum of the superoperator \mathcal{L} is $\{0,-\gamma,-2 \gamma, \ldots\}$:

$$
L_{x}=Z_{x}, \quad \dot{O}=-\gamma \sum\left[Z_{x},\left[Z_{x}, O\right]\right]
$$

For a product of Pauli operators, the decay rate is $n \gamma$ where n counts the number of Pauli X or Y 's:

$$
\dot{Z}_{0}=0, \quad \dot{X}_{0}=-4 \gamma X_{0}, \quad X_{0} Y_{1}=-8 \gamma X_{0} Y_{1}, \quad \ldots
$$

In perturbation theory (of $1 / \gamma$), change of the spectrum is

$$
\delta E_{n}=\operatorname{tr} O_{n} i\left[H, O_{n}\right]+\sum_{m \neq n} \frac{\left|\operatorname{tr} O_{m}\left[H, O_{n}\right]\right|^{2}}{E_{n}-E_{m}}+\ldots
$$

Diffusion and Operator Decay

Let $O_{k} \equiv \sum_{x} O_{x} e^{i k x}$ and C_{0} conserved $\left(E_{0}=0\right)$. Hydrodynamical expansion in k reads

$$
\mathcal{L}\left[O_{k}\right] \equiv \dot{O}_{k}=\sum_{x} \mathcal{L}\left[O_{x}\right] e^{i k x} \equiv \sum_{x} \sum_{i=0}^{\infty} k^{i} \mathcal{L}^{(i)}[O]_{x} e^{i k x}
$$

Example (Heisenberg chain)

$$
\begin{aligned}
\mathcal{L}\left[Z_{k}\right] & =-2 J \sum_{x}\left(X_{x-1} Y_{x}+Y_{x} X_{x+1}-Y_{x-1} X_{x}-X_{x} Y_{x+1}\right) e^{i k x} \\
& =-2 J \sum_{x}\left[\left(e^{i k}-1\right) X_{x} Y_{x+1}+\left(1-e^{i k}\right) Y_{x} X_{x+1}\right] e^{i k x} \\
& \mathcal{L}^{(0)}[Z]=0, \quad \mathcal{L}^{(1)}[Z]=-2 i J(X \otimes Y-Y \otimes X) \\
& \mathcal{L}^{(2)}[Z]=J(X \otimes Y-Y \otimes X), \quad \cdots
\end{aligned}
$$

Diffusion and Operator Decay

$$
\begin{gathered}
\dot{O}_{k} \equiv \mathcal{L}\left[O_{k}\right]=\sum_{x} \sum_{i=0}^{\infty} k^{i} \mathcal{L}^{(i)}[O]_{x} e^{i k x} \\
\mathcal{L}^{(1)}[Z]=-2 i J(X \otimes Y-Y \otimes X), \quad \mathcal{L}^{(2)}[Z]=J(X \otimes Y-Y \otimes X)
\end{gathered}
$$

Perturbation theory in small k (to the second order),

$$
\begin{aligned}
& E_{0}(k)=\left(Z\left|\left(k \mathcal{L}^{(1)}+k^{2} \mathcal{L}^{(2)}\right)\right| Z\right)-k^{2} \sum_{n \neq 0} \frac{\left(Z\left|\mathcal{L}^{(1)}\right| O_{n}\right)\left(O_{n}\left|\mathcal{L}^{(1)}\right| Z\right)}{E_{n}} \\
&=-\frac{J^{2} k^{2}}{\gamma}+o\left(k^{2}, \gamma^{-1}\right) \\
& \tilde{Z}_{k}(t)=e^{-J^{2} k^{2} t / \gamma} \tilde{Z}_{k}, \quad k \rightarrow 0, \gamma \rightarrow \infty
\end{aligned}
$$

$D=J^{2} / \gamma$; diffusion is explicit and generic!

Idea of the Proof

Assume no ballistic modes $\left(Z\left|\mathcal{L}^{(1)}\right| Z\right)=0$,

$$
\begin{aligned}
D & =-\left(Z\left|\mathcal{L}^{(2)}\right| Z\right)+\sum_{n \neq 0} \frac{\left(Z\left|\mathcal{L}^{(1)}\right| O_{n}\right)\left(O_{n}\left|\mathcal{L}^{(1)}\right| Z\right)}{E_{n}} \\
& =D_{0}-\int_{0}^{\infty} d t\left(Z\left|\mathcal{L}^{(1)} e^{t \mathcal{L}^{(0)}} \mathcal{L}^{(1)}\right| Z\right) \\
& =D_{0}-\int_{0}^{\infty} d t\left(Z\left|\lim _{k \rightarrow 0} \partial_{k}\right| \dot{J}_{k}(t)\right)
\end{aligned}
$$

$$
\text { If } \dot{J}_{k}(t)=\sum O_{x}^{\alpha}(t) e^{i k x}
$$

$$
\lim _{k \rightarrow 0} \partial_{k} \dot{J}_{k}(t)=\sum_{\alpha, x} i x O_{x}^{\alpha}(t)
$$

$$
\int_{0}^{\infty} d t\left(Z\left|\lim _{k \rightarrow 0} \partial_{k}\right| \dot{J}_{k}(t)\right) \sim\|\dot{J}\| /\|Z\| \int_{0}^{\infty} d t v_{\mathrm{LR}} t e^{-t / \tau} \sim v_{\mathrm{C}} v_{\mathrm{LR}} \tau
$$

Results and Future Work

Final result:

$$
D \leq D_{0}+\left(\alpha v_{\mathrm{LR}} \tau+\beta \xi\right) v_{\mathrm{C}}
$$

where $D_{0}, v_{\mathrm{LR}}, v_{\mathrm{C}}$ and ξ can be easily derived from the microscopic Hamiltonian, α and β are some well-defined constants and $1 / \tau>0$ is the main dynamical input - minimal decay rate of non-conserved operators.

- $D \neq 0$ even if $\tau=0$. Hints for resistivity saturation?
- Can be easily generalized to bounds for sub-diffusive coefficients or attenuation rate of sound modes.
- Goal: understand hydrodynamic coefficients from microscopic couplings. Quantum information theory may lead to a more precise understanding of applicability of hydrodynamics as well.

References

[1] Sevag Gharibian, Yichen Huang, Zeph Landau and Seung Woo Shin (2015), Quantum Hamiltonian Complexity, Foundations and Trends in Theoretical Computer Science: Vol. 10: No. 3, pp 159-282.
[2] M. Suzuki, Ergodicity, constants of motion, and bounds for susceptibilities, Physica 51, 277-291, 1971.
[3] P. Kovtun, D. T. Son and A. O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 0310, 064 (2003), arXiv:hep-th/0309213.
[4] T. Hartman, S. A. Hartnoll and R. Mahajan, Upper Bound on Diffusivity, Phys. Rev. Lett. 119, 141601, 2017, arXiv:1706.00019.
[5] M. B. Hastings, Locality in Quantum Systems, arXiv:1008.5137.
[6] E. H. Lieb and D. W. Robinson, The finite group velocity of quantum spin systems, Comm. Math. Phys. 28, 251-257, 1972.
[7] D. Poulin, Lieb-Robinson Bound and Locality for General Markovian Quantum Dynamics, Phys. Rev. Lett. 104, 190401, 2010.
[8] Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). CUP.
[9] Robert Alicki, Invitation to quantum dynamical semigroups, arXiv:quant-ph/0205188.

