

Strange insulators from pinninng of superstructure in holography

Alexander Krikun (Instituut Lorentz, Leiden)

Bounding Transport and Chaos in Condensed Matter and Holography NORDITA, 23 Aug 18

References

arXiv:1512.02465	T.Andrade, A.K.	JHEP 1605 (2016) 039
arXiv:1701.04625	T.Andrade, A.K.	JHEP 1703 (2017) 168
arXiv:1708.08306	T.Andrade, M. Baggioli, A.K. , N. Poovuttikul	JHEP 1802 (2018) 085
arXiv:1710.05791	T.Andrade, A.K. , K.Schalm and J.Zaanen	Nature Physics (2018)
arXiv:1710.05801	А.К.	
arXiv:1809.xxxxx	T.Andrade, A.K.	

Outline

- 1. Spontaneous vs. explicit breaking of translations
- 2. Mott insulator as a commensurate charge density wave
- 3. Holographic Mott insulator
- 4. Toy model: Helix
- 5. Scaling properties of the pinned state

Translational invariance

Suppose the Lagrangian is translationally invariant

$$S = \int dx^d \mathcal{L}_0[\psi], \qquad \partial_{x_i} \mathcal{L}_0 = 0$$

Then the momentum is conserved as a corresponding Noeter charge

$$\partial_t P_i = 0$$

Explicit breaking

If we add a position dependent term in the Lagrangian

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_1(x)$$

Then the Lagrangian is not invariant anymore

$$\partial_{x}\mathcal{L} \neq 0$$

The momentum is not conserved

$$\partial_t P \neq 0$$

and decays with characteristic time scale

$$\tau_P \sim \lambda$$

Spontaneous breaking

Given the translationally invariant Lagrangian the ground state may nonetheless exhibit the spontaneous superstructure

$$\partial_x \mathcal{L}_0 = 0, \qquad \psi_0 = \psi_0(x), \qquad ||\psi_0|| \equiv \Sigma$$

The Noeter theorem still holds though and the momentum is conserved $\partial_t P = 0$.

The ground state is continuously degenerate since any $\psi_0(x + \delta x)$ is also a ground state.

There is a gapless sliding mode in the linearized spectrum: **the Goldstone boson.** $\psi_{GB} \equiv \partial_x \psi_0(x)$

$$\mathsf{E}[\psi_0(x+dx)] \equiv \mathsf{E}[\psi_0(x)] + \delta \mathsf{E}[\partial_x \psi_0] dx = \mathsf{E}[\psi_0(x)]$$

$$\delta \mathbf{E}[\partial_x \psi_0] = \mathbf{0}$$

Explicit and Spontaneous breaking

If one adds an x-dependent deformation in the system with superstructure, this gives mass to the *pseudo*-Goldstone

$$\begin{split} \mathsf{E}[\psi_0(x+dx)] &= \mathsf{E}[\psi_0(x)] + \lambda \mathsf{E}_1[\psi_0(x)] \\ \delta \mathsf{E}[\partial_x \psi_0] &\sim \lambda \Sigma \end{split}$$

The effective mass is proportional to the product of explicit and spontaneous symmetry breaking scales.

The momentum mediated transport is gapped.

Mott insulator as commensurate charge density wave

Mott insulator

The crystal of charged particles can freely slide

Mott insulator

The weak pinning by ionic lattice produces resistivity

Mott insulator

The strongly pinned crystal is a Mott insulator

Holographic Mott insulator

Holographic Mott insulator

Consider the model with inhomogeneous spontaneous superstructure

$$S = \int d^4x \sqrt{-g} \left(R - rac{1}{2} (\partial \psi)^2 - rac{ au(\psi)}{4} F^2 - V(\psi)
ight) - rac{1}{2} \int artheta(\psi) F \wedge F$$

and explicit lattice

$$\mu(x) = \mu_0 \big(1 + A \cos(qx) \big)$$

Spontaneous structure

The spontaneous structure is relevant in IR.

Explicit lattice

Explicit lattice is irrelevant in IR

Lock in

The lock in happens in the bulk

AC conductivity

The spectral weight is shifted due to the pinning of Goldstone

Insulating state

The pinned state is gapless insulating

Weak pinning Helical toy model

Helical background

Same physics can be studied in the homogeneous helical lattice

$$S = \int d^5 x \sqrt{-g} \left(R - 2\Lambda - \frac{1}{4}F^2 - \frac{1}{4}W^2 \right) \\ - \frac{\gamma}{6} \int d^5 x A \wedge F \wedge F - \frac{\kappa}{2} \int d^5 x B \wedge F \wedge W$$

$$\begin{aligned} \omega_1 &= dx, \\ \omega_2 &= \cos(px)dy - \sin(px)dz, \\ \omega_3 &= \sin(px)dy + \cos(px)dz. \end{aligned}$$

$$A = A_t dt + A_2 \omega_2, \qquad A_t \Big|_{r \to \infty} = \mu$$
$$B = B_t dt + B_2 \omega_2, \qquad B_2 \Big|_{r \to \infty} = \lambda$$

$$ds^{2} = -U(r)dt^{2} + rac{dr^{2}}{U(r)} + e^{2v_{1}}\omega_{1}^{2} + e^{2v_{2}}(\omega_{2} + Qdt)^{2} + e^{2v_{3}}\omega_{3}^{2},$$

Irrelevant breaking

Zero T geometry scales near horizon (r = 0) as

$$U \sim r^2$$
, $e^{v_1} \sim 1$, $e^{v_2} \sim 1$, $e^{v_3} \sim 1$
 $A_t \sim r$, $B_2 \sim 0$

Relevant breaking

At large λ the lattice is **relevant in IR**

Zero *T* geometry scales near horizon (r = 0) as $U \sim r^2$, $e^{v_1} \sim r^{-1/3}$, $e^{v_2} \sim r^{2/3}$, $e^{v_3} \sim r^{1/3}$ $A_t \sim r^{5/3}$, $B_2 \sim B_2^0 + B_2^1 r^{4/3}$

Spontaneous breaking

At $T < T_c$ the spontaneous breaking is relevant in IR.

Spontaneous and explicit breaking

Small explicit lattice does not affect near horizon geometry

Zero T geometry scales near horizon (r = 0) as $U \sim r^2$, $e^{v_1} \sim r^{-1/3}$, $e^{v_2} \sim r^{2/3}$, $e^{v_3} \sim r^{1/3}$ $A_t \sim r^{5/3}$, $A_2 \sim A_2^0$, $Q \sim r^{2/3}$, $B_2 \sim 0$

Pinning of Goldstone

Again, at $T < T_c$ (fixed λ) the Goldstone is gapped.

Pinning of Goldstone

At fixed T the DC conductivity is insensitive to λ !

Strange insulator

The new insulating state exhibits the new scaling

Can we understand that?

DC from horizon

One can compute DC conductivity in terms of horizon data.

In the case of the helix the leading terms behave as

$$\sigma_{DC} = e^{v_2 + v_3 - v_1} \frac{B_2^2}{B_2^2 + A_2^2} T^{4/3} + O(T^{8/3})$$

 $\begin{array}{ll} \mbox{Relevant explicit:} & A_2 = 0 & \sigma_{DC} \sim T^{4/3} \\ \mbox{Pure spontaneous:} & B_2 = 0 & \sigma_{DC} \sim T^{8/3} \end{array}$

Dengerously irrelevant mode

In case of pinning there is an **irrelevant** B_2 mode which can contribute to the scaling of conductivity

$$B_2 \sim \lambda r^{\delta}, \qquad \delta = rac{1}{6}(-5 + \sqrt{145}) \approx 1.17$$

$$\sigma_{DC} \sim e^{v_2 + v_3 - v_1} rac{\lambda^2}{A_2^2} T^{4/3 + 2\delta} + O(T^{8/3})$$

IR Scaling

These predictions match with numerics!

Conclusion

- When the spontaneous structure is pinned, the insulating state of the new class arizes
- The conductivity is not controlled by momentum relaxation rate
- Instead the incoherent conductivity of the purely spontaneous state plays the key role

Experimentally relevant

Strange gapless insulating states arise in the CDW pseudogap region of High-Tc superconductors

