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Motivation
Metals often display spontaneously 
broken symmetries  
near quantum critical points 

Transport properties  
(conductivity etc.) are highly 
sensitive to the nature of 
broken symmetries

2d examples: 
U(1), translations

stripes/checkerboard  
patterns in the charge  
density

[Mesaros  
et al. ‘11]

In a tractable limit: 
slow flows near a local 
equilibrium 

hydrodynamics
τ ≫ τlocal thermalization

Edge dislocation 
in a stripe pattern

U(1): [Davison, Delacrétaz, Goutéraux and Hartnoll, ’16]



Motivation

translation symmetries 
(observed in the pseudogap region) 

In the presence of broken 
symmetries, hydrodynamics contains 
additional Goldstone modes 

Quantum fluctuations: 
mobile topological defects locally 
restore the symmetry by relaxing 
phase coherence 
(phase relaxations) 
  

1. Qualitative behaviour up to the 
hydrodynamic limit 

2. Evaluation of hydrodynamic 
coefficients for phase relaxation

what’s new

Through memory matrix analyses 
(see 1702.05104) 



Motivation

Characteristic features of  
the optical conductivity 

1. Momentum relaxation broadens 
the Drude peak 

2. Magnetic fields move the Drude 
peak to nonzero frequency 
(cyclotron) 

3. Spontaneous breaking of 
translations with mobile 
dislocations both broadens the 
peak and moves it out 

4. Magnetic fields + the above: 
finite frequency peak can split 

[Grüner, ’88]

Stripe features

`Strange’ features of metals 
near quantum critical points 

Other effects also exist, e.g. on the 
viscosity (sound attenuation)

Bad metals

CaRuO3

[Lee, Yu, Lee,  
Noh, Gimm,  
Choi, Eom, ’02]



Hydrodynamic formulation

Addition of Goldstone modes (phases      )

Conservation equations

A set of slow modes 
with sources 

Charge, entropy, 
momentum densities 

Constitutive relations

n, s, πi

μe, T, vi

To fist order in derivatives

• Identification of modes and sources 
(through the free energy) 

• Modified conservation equations and 
constitutive relations (TR, P) 

• Addition of Josephson relations for each 
Goldstone mode 

• Phase relaxation 

·n+ ∇ ⋅ j = 0

(∂t + Ω)∇ ⋅ ϕ = ∇ ⋅ v + …

ϕi

Limited by time reversal 
symmetry and parity

j = nv − σ0 ∇μe − α0 ∇T + …

Compare U(1): ∇μe



Ω ∼ ωo ∼ kBT/ℏ

The qualitative features agree: 
peak shift and width increase with  

With nearly Galilean invariance, 
the hydrodynamical equations give 

Peak position and width fits to 
behaviour of this kind show 

i.e. the typical linear in T resistivity 
of bad metals 

at the boundary of hydrodynamical 
validity

τ ∼ 1/T ∼ τlocal thermalization

alternative ways of 

0 1 2 3 4

0

1

2

3

4

ω (A.U.)

σ1(ω) (A.U.)

ratio of broadening and 

Bad metals

Illustration of bad metal optical conductivity 

T

ρdc = 1
σdc

∼ m
ne2

kBT
ℏ

σdc = ne2

m
Ω
ω2o

Ω σ(ω) = σo+ n2

χππ

Ω − iω
(Ω − iω)(Γ − iω) + ω2o

Despite a small momentum relaxation Γ



[Wang, Zheng, Wu, Ma,  
Xiang, Jin, Mandrus, ’04]

Na0.7CoO2

[Tsvetkov, Schültzmann, Gorina,  
Kaljushnaia, van der Marel, ’97]

Bi2Sr2CuO6

[Lee, Yu, Lee,  
Noh, Gimm,  
Choi, Eom, ’02]

CaRuO3



Additional features
Apart from indicating that some bad metal behaviour can be 
connected to fluctuating, spontaneously broken translation 
symmetries, some additional features include: 

• Where vortices in a superfluid causes resistivity, 
dislocations in a stripe/checkerboard system causes sound 
attenuation 

• In the presence of a magnetic field, the finite frequency 
peak splits into two (not experimentally observed). At high 
fields, one peak moves out of the hydrodynamic regime 

The remaining mode is 

and the associated qualitative behaviour of the 
conductivity, with this mode, is identifiable in Wigner 
crystal regimes of GaAs

ϕi + 1
nB

ϵijπj Work in progress
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