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Topological states of matter

 Classification of states of matter

« Quantum matter: Landau-Ginzberg paradigm, order parameter,
symmetry breaking

» Topological states of matter: beyond the Landau-Ginzburg
paradigm; nontrivial topology in the quantum wave function;
certain properties stable under small perturbations; quantum
topological phase transition

« Examples: quantum hall state, topological insulators, topological
semimetals......



Topological states of matter with
Interactions

« Most known topological states of matter: based on weak
coupling

 Topological states of matter with strong interactions:

»In lab: iriddium oxide materials (Shitade et al, 2009), transition
metal oxide heterostructures (Xizo et al, 2011) , the Kondo
iInsulator SmB6 (Dzero et al, 2012, 2010; Wolgast et al., 2013)

» Possible consequences of strong interactions: topological
structure destroyed; new topological structures arise;



Motivation:

» Topological states of matter with strong interactions:
difficulty in direct condensed matter calculations, especially
for topological semimetals;

« Holography;

« New entry in the holographic dictionary: topological states
of matter;

« New predictions from holography for transport properties;



Outline:

» Weyl/nodal line semimetals;

» Holographic Weyl/nodal line semimetal: mode],
transport properties;

» The topological structure: where is the bulk topology?

» Topological invariants: from Green functions

« Summary and open questions



| Topological semimetals in condensed
matter

* Many particle systems: emergent semimetals with band crossing

* Dirac semimetal Weyl semimetal nodalline semimetal

energy




| Topological semimetals in condensed
matter

* Fermi nodal points/lines protected by topology
* Topological charge
* Accidental VS topological (Picture taken from C. Fang, et.al, 2016)
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| Topological semimetals in condensed
matter

* Weakly coupled field theory model: Weyl semimetal

 AQFT model (Kostolecky et al. ; Jackiw; Burkov, Balents; Grushin)

L = (iy" Oy + M + y57:b) )
* Topological phase transition:

T~
T
T T~ T




| Topological semimetals in condensed
matter

e Anomalous Hall effect:

— 1—» —
J:2—ﬂ_2beff><E

* Weyl semimetal phase

M<b: bagg=V02—M2  Legg = V("0 + 757:bett )10
* Gapped phase

M>b:  Mag=+M -1 Lot = P(iv" D, + Mgt )1




| Topological semimetals in condensed
matter

* Weakly coupled field theory model: nodal line semimetal
Lm0 —m—"bu)o = iy

2 2 2 2
m= < 4b;, m= > 4bg,




real/imaginary part self duality

L Not independent operators, J
Il Holographic semimetals ST TRy — Ty
0, J" =0,

0, JY = imapy° 1) + 2ib,, "y

Operator
Other important ingredients:

U(1)A charged

mypip scalar with source gravity+cosmological constant;
_ axial field Az U(.1 ) and U(T)y gaugg field; :
YT 1) chiral anomaly (and mixed axial
gravitational anomaly) represented by
_ massive two form 3 special form of Chern-Simons term;

(il field B



Il Holographic semimetals

u(1)y, Chern-Simons term dual to

\ UL)a chiral anomaly

5 12 1 2 2 abede
— /d L/ — [2,&2 (R + ﬁ) — —F — _F EF Aa (3-;[:’)(};}6 + E){Eff)

= (Da®) (D7) — V1(P) —?U(D[H_Bbc]) (DB")) — Vi(Ba) — )\|<I>|QBabB"”’]

U(1), charged scalar \ U(1), charged two form field, a better way is to use
the first order action that obeys the self dual property

* Holographic action

mass parameters Wlth)\ ¢4
determined by scaling potentlial term automatically (G.E.Arutyunov, et al., 1998;R. Alvares,
dimensions et al. 2011;): 1 T
: : - —2gp (i=(BAH'—B'AH)+m 32)
* Bulk configurations and boundary conditions | ** ( 6! ) +ms|B
H=dB—-iA>\B
M M
Wey! r Nodal line <y

AZIT—>ooNb_|— Bxy‘r%ooNbr—’_



Il Holographic semimetals

* Weyl/nodal line semimetals share the same mathematical structure;

* With backreactions to gravity (well defined probe limit exists, though
subtle near the critical point);

* In both cases:

* three types of near horizon solutions at zero temperature: flowing to
different UV values;

* a guantum phase transition from a topologically nontrivial phase to a
trivial phase;



I1.1 Holographic Weyl semimetals

[ Near horizon T=0 solutions ]

[ Topological solution ] [ Critical solution J [ Trivial solution }
2 2 2 5, dr? 2 162 — unr2(—dt> 12 12 dr? 7 "Qﬁd 2 A2
ds® = u(—dt” + dx” + dy )JrT 4 hdz as® = ugr (— t° +dx” +dy ) + o1 —+ hot Z (182 _ u(—dtQ 4+ d;L‘Q 4+ dy2) 4+ - + ]1-(]22
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1.1 Holographic Weyl semimetals

R o~ E

Figure 2. The bulk profile of background A, and ¢ for M /b =
0.695 (blue), 0.719 (green), 0.743 (brown), 0.744 (red-dashed),
0.745 (orange), 0.778 (purple), 0.856 (black).

As M/b approaches near the critical point, the two solutions approach the
critical solution and develop a critical region near the IR



I1.1 Holographic Weyl semimetals

Free energy density:
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[1.1 Holographic Weyl semimetals

Order parameter: anomalous Hall conductivity

1

Kubo formula oy = lim — (J,,Jp ) (w, k = 0)
w—0 W

determined by the IR value of the axial gauge field
Opy = —SO{AZ(T‘())

Only nonvanishing for the topological nontrivial solution

Topological trivial solution: restoration of time reversal symmetry in the IR



I1.1 Holographic Weyl semimetals

b
blue: T=0 holographic model; green dashed: weakly coupled T=0;
black: T/b=0.1; purple: T/b=0.05; red: T/b=0.04; brown: T/b=0.03;

(oame/b) oc (M/b)e — M/b)° o~ 0.211

in contrast to the field theory result: 0.5



[1.1 Holographic Weyl semimetals

. . . between a topological semimetal
transverse (solid) and longitudinal W polagicat semi
and a topologically trivial phase

(dashed) electric conductivities for \
different temperatures.
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[1.1 Holographic Weyl semimetals: prediction
of odd viscosity

Advantage of holography in the study of transport properties of
many body systems:

» Zero or finite temperature: black hole;

» Real time, direct calculation in Minkowski signature; no need
of Wick rotation;

» Solve for perturbations in classical gravity;

» On-shell action of perturbations give the transport
coefficients;



Prediction of this holographic model: odd viscosity

 Broken time reversal symmetry: odd viscosity

« Axisymmetric system with a time reversal breaking parameter: two
independent odd(Hall) viscosities

viscosity tensor ., _ limy élm (G2 (. 0)]

nH” = Nazyz = Nyz,z2 N, = Ney T = — N2y
\ ¥
rT — yy

« "lH. Hall viscosity in the plane orthogonal to b

«  Nmy specific to axisymmetric three dimensional systems



Odd viscosity in holographic Weyl semimetal

viscosity determined by IR properties: effective b goes to zero, no substantial odd

viscosity expected
/ gravitational anomaly

2 2 r2
A0 f
nH” — nyz,:cz — _nxz,yz — 4< h

=70

— The005 > highly suppressed in the Wey/

— Tb=0.04 | semimetal phase,

— Th=0.03 | > rises steeply entering the quantum
critical region;,

> peaks at the critical point and drops
slowly as M/b increases, finally

Obeeee®/ /'eac/')/'ng Zero




Odd viscosity in holographic Weyl semimetal

gravitational anomaly

i, = 8Cq 9" fA,

r=ro

> IR properties

100F ]
' — Th=005 | qualitatively the same as the

80 — Tb=004 ] other one
sol === T/b=0.03 ]
g;% ; » highly suppressed in the Weyl

semimetal phase;

> rises steeply entering the
quantum critical region;

» peaks at the critical point and
drops slowly as M/b increases,
finally reaching zero




1.2 Holographic semimetals: nodal line

d 2
ds® = u(—dt? + d2?) + % 4 f(da? + dy?)

D = o(r),
B,, = B(r). [ near horizon solutions at T=0 J
[ nodal line semimetal solution } [ critical solution } [ trivial solution
o 3.,
8(11 +3V13)r (1 + dur ) o = u()r2(1 + (5u7"5) ’ "y — (1 n 8_)\1) 2
/2 ) = forY(1+5fr?
f — \‘/5_ _ 26[);, (] + Of,rffrl) ? ']l .}lO ( + 'f3 ) ) : 2\/W—Ml_
| | " (p — ¢0(1 —|—5¢’]"[) . O = \/74—()1 348Aq
QO = 6-")(1'?“1 :
/ L ) o ) /B [3NFA,
B = bof’ﬂ(l + db-r'“'l) ; 5= b()ra(l + 0br ) ; = b1»’2"/_‘f gun

l l l

[UV M/b<critical vaIue} [ UV critical M/b } [ UV M/b>critical value }




1.2 Holographic semimetals: nodal line

* Bulk configurations

10 10 10° 1 10° 107 107° 10° 1 10°
r r

b b



1.2 Holographic semimetals: nodal line

Free energy and phase transition uv
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lll The topological structure

* Where does the topology lie?

* topological invariant from Green function;
* a bulk topological structure;

e Equations for B and phi

— + = — A — =10
? +(2u+f>gb (mi+ A"+ f? )’u ?
B" B [(3u f B, , 5
—+—— =) ——(m3+Ap”) =0,
n i n ( 2u  f ) u (mQ T ) |

* lgnoring the interaction term, behavior determined by IR conformal

dimension . st

B ~ cpr ¢ ~ cyr



lll the topological structure

 With interaction in the IR

B

_ Y
B~ cpr 0= ¢~ cyr -

cp and ¢, cannot both be nonzero

* Three types of near solutions at leading order:

Cp — 0 while CRB # 0
. The interaction term modifies the IR scaling
cg = 0 while Co 7§ 0 dimension of at least one of the fields.

Co

CBIO



lll the topological structure

* For a nodal line/Weyl semimetal solution, with this near horizon
behavior, we cannot find a small perturbation in this background with
O ~ cqyr“sf or ¢ ~ c,in the case with )\1¢4 term, which could gap or
partially gap the semimetal.

* The quantum phase transition mechanism here for topological
semimetals is different from the BF bound mechanism for many
holographic quantum phase transitions, e.g. holographic
superconductors, metal-insulator phase transitions, etc..



|V Topological invariants: from Green
functions

* Topological invariants for weakly coupled topological systems:
distinguish different topology of the quantum wave function (or
Hamiltonian) in the momentum space, preserved under
homeomorphisms; intrinsic property of the band structure; changes
under topological phase transitions

* A simple example for a topological invariant of weakly coupled
topological systems: Berry phase

1
C1 = %/dkwdkyfxy Summed over all

occupied states
.F;,;y — akxAky — 8kyAk$ and Aku — ZZ] <nk\8ku\nk>



|V Topological invariants: from Green
functions

* Equivalent expression using Green functions ( )

1
2472

* Could be defined for interacting systems, however, requires integral in the £y = w
direction

* Topological invariants for interacting systems: the topological Hamiltonian
method ( ):

The zero frequency Green function contains all topological information.

Topological Hamiltonian:  #, (k) = —G(0, k)"

Topological Green function: Gy (iw, k)™ = ww — H(k)

Connecting two Green functions: gx(iw,k) = (1 -\)G(iw, k) + A\Gy(iw, k), 0 < X < 1

N = / dkod*kTr[e"PGO,G~*G0,G™'GI,G™]



|V Topological invariants: from Green
functions

* Topological Hamiltonian method:
* Topological information contained in g x—1 = G+ (iw, k)

* The topological Hamiltonian #;(k) = —G(0,k)~": an effective
Hamiltonian, real eigenvalues: + unoccupied, - occupied;

* Generalized topological invariant:
replace the Bloch states in the weakly coupled formula by occupied

eigenstates of  74,(k)|n.) = —E,|ny) and E, > 0



|V Topological invariants: from Green
functions

* Topological invariant for holographic Weyl semimetals:

* A closed surface surrounding the Weyl node
1
Oyt = %fﬂk dS

* Trivial: C=0; Nontrivial: C=integer Berry curvature

* Fermion Green function: probe fermions on the Weyl semimetal background
S — Sl “|“ SQ ‘Jr‘ Sz'nty
Sl — /dSZE\/ —gZ\I;l (FaDa —my — iAZFz)\Ijl,
Sy = /d%\/—g?j\lfg (FaDa +my + iAZFz)\Ilg,

Sz'nt - /dBQj\/ —Q(ZCZ5‘I}1‘I’2 + iqﬁ*\ﬁqul)v



|V Topological invariants: from Green
functions

* Topological invariant for pure AdS:

kot 0
G(O’]{) ~ N (klsz 7 o )

O 3 _k1—2mf

* Poles at k=0; Fermi point;

* Two occupied eigenstates: two chiralities, the same as the free theory;
* For each chirality, there is a topological number 1, -1, total O;

* Two Weyl points annihilate at the Dirac point;



|V Topological invariants: from Green

functions

* Topological invariant for holographic Weyl semimetals:
* The M /b — 0O limit:

klifll—%f:f ’ 0 \\;
G~N ! 0 - "132_;3?: , A \\\'-~/.
ko ! /,ﬁ\
ky = \/k§+k§+(kz—b0)2 et f
ky =[R2+ K2+ (ke + bo)?
k., = +£by C=+1 10 00

* Semi-analytically, using near far matching method, we could proved that
for very small M/b, the topological invariants are the same.



|V Topological invariants: from Green
functions

* For holographic nodal line semimetals
* Probe fermions

S — Sl+52+sint7
S, — / d%#—gi@l(F“Da - mf)xpl,
S, = / d5x\/—gi\ff2(F“Da +mf) U,

Sint = —/d%\/ —g<Z(I)\I11\IJ2 -+ Z(I)*\Ifzqfl + EB) ,

£B — —i(nzBab\Ileab’y5\If2 — n;B;b\PQFab’Y5\IJ1) .



|V Topological invariants: from Green
functions

* Topological invariant for holographic nodal line semimetals:
* Multiple Fermi nodal lines at kz=0

\/ Multiple Fermi nodal
lines from the same two
bands or different two
bands?



|V Topological invariants: from Green
functions

|

ﬁoectrum constructeh

from the zero
frequency Green
functions, which
reflects the topological
structure of the system.

-

S
[

Zeroes, poles from two
different sets of bands




|V Topological invariants: from Green
functions
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|V Topological invariants: from Green
functions

* Topological invariant for holographic nodal line semimetals:
* Two types of topological invariants

//7/77 - 77777\

| W

Berry phase along a circle



|V Topological invariants: from Green
functions

* Topological invariant for holographic nodal line semimetals
* Discrete Berry phase

G’_iqu o <n1 |TL2>

~ {nafna)

Berry phase=Sum
of all adjacent
phase differences



|V Topological invariants: from Green
functions

* Topological invariant for holographic nodal line semimetals:

e Results:

* Berry phase=0 for zeros of the zero frequency Green function;
* Berry phase =Pi for all poles from one set of the bands;

* Berry phase undetermined for all poles from the other set of bands;



IV Summary

* Existence of strongly coupled topological semimetal states;

* Transport properties confirm Weyl/nodal line semimetal phase;
* An intrinsic topological structure in bulk configuration;

* Nontrivial topological invariants from dual Green functions

* Transport predictions from holography:

» Substantial odd viscosity in the quantum critical region; new
prediction for the physics of the quantum critical region of a Weyl
semimetal from holography!

» New observational effect from gravitational anomaly!



Open guestions

* A better understanding of the deeper organizational principles of strongly
coupled topological states of matter and predict more types of strongly
coupled topological states of matter

* Holographic framework as a possible method for classification of strongly
interacting gapped as well as gapless topological states of matter

* Any new strongly coupled topological states of matter which even do not exist
at weak coupling?

e Edge states ( )
* Gapped, Topological superconductors, accidental semimetals?

* Prediction of new transport properties of strongly coupled topological states
of matter?



Thank you!



