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Topological states of matter with 
interactions
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I Topological semimetals in condensed 
matter
• Many particle systems: emergent semimetals with band crossing
• Dirac semimetal   Weyl semimetal    nodal line semimetal



I Topological semimetals in condensed 
matter

• Fermi nodal points/lines protected by topology
• Topological charge
• Accidental VS topological      (Picture taken from C. Fang, et.al, 2016)



I Topological semimetals in condensed 
matter

• Weakly coupled field theory model: Weyl semimetal
• A QFT model (Kostolecky et al. ; Jackiw; Burkov, Balents; Grushin)

• Topological phase transition:



I Topological semimetals in condensed 
matter

• Anomalous Hall effect: 

• Weyl semimetal phase

• Gapped phase



I Topological semimetals in condensed 
matter
• Weakly coupled field theory model: nodal line semimetal



II Holographic semimetals

Operator Field

U(1)A charged 
scalar with source

axial field Az

massive two form
field B

Other important ingredients:

gravity+cosmological constant;
U(1)A and U(1)V gauge field;
chiral anomaly (and mixed axial 
gravitational anomaly) represented by 
a special form of Chern-Simons term;

Not independent operators,
real/imaginary part self duality



II Holographic semimetals
• Holographic action

• Bulk configurations and boundary conditions

U(1)V U(1)A
Chern-Simons term dual to 
chiral anomaly

U(1)A charged scalar U(1)A charged two form field, a better way is to use
the first order action that obeys the self dual property
automatically (G.E.Arutyunov, et al., 1998;R. Alvares,
et al. 2011;):

mass parameters 
determined by scaling 
dimensions

with           
potential term 

 



II Holographic semimetals

• Weyl/nodal line semimetals share the same mathematical structure;
• With backreactions to gravity  (well defined probe limit exists, though 

subtle near the critical point); 

• In both cases:
• three types of near horizon solutions at zero temperature: flowing to 

different UV values;
• a quantum phase transition from a topologically nontrivial phase to a 

trivial phase;



II.1 Holographic Weyl semimetals
Near horizon T=0 solutions

Critical solutionTopological solution Trivial solution

IR

UV



II.1 Holographic Weyl semimetals
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II.1 Holographic Weyl semimetals
 

very continuous phase transition



II.1 Holographic Weyl semimetals
 

 

 



II.1 Holographic Weyl semimetals

blue: T=0 holographic model; green dashed: weakly coupled T=0;
black: T/b=0.1; purple: T/b=0.05; red: T/b=0.04; brown: T/b=0.03;

in contrast to the field theory result: 0.5



II.1 Holographic Weyl semimetals

between a topological semimetal 
and a topologically trivial phase)  ) )

(  ) ) ) )
) .

T

a topological trivial 
semimetal (partially gapped)

the Lifshitz critical point governs the 
physics in the quantum critical region



Advantage of holography in the study of transport properties of 
many body systems:

Ø Zero or finite temperature: black hole;
Ø Real time, direct calculation in Minkowski signature; no need 

of Wick rotation;
Ø Solve for perturbations in classical gravity;
Ø On-shell action of perturbations give the transport 

coefficients;        

II.1 Holographic Weyl semimetals: prediction 
of odd viscosity



Prediction of this holographic model: odd viscosity
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Odd viscosity in holographic Weyl semimetal
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gravitational anomaly



Odd viscosity in holographic Weyl semimetal

qualitatively the same as the 
other one

gravitational anomaly

IR properties

Ø highly suppressed in the Weyl 
semimetal phase;

Ø rises steeply entering the 
quantum critical region;

Ø peaks at the critical point and 
drops slowly as M/b increases, 
finally reaching zero



II.2 Holographic semimetals: nodal line

nodal line semimetal solution critical solution trivial solution

near horizon solutions at T=0

UV critical M/bUV M/b<critical value UV M/b>critical value

IR

UV



II.2 Holographic semimetals: nodal line

• Bulk configurations



II.2 Holographic semimetals: nodal line

   



III The topological structure
• Where does the topology lie?
• topological invariant from Green function;
• a bulk topological structure;
• Equations for B and phi

• Ignoring the interaction term, behavior determined  by IR conformal 
dimension



III the topological structure

• With interaction in the IR

• Three types of near solutions at leading order:

. .  
. . . .



III the topological structure
• For a nodal line/Weyl semimetal solution, with this near horizon 

behavior, we cannot find a small perturbation in this background with                          
a                  or              in the case with           term, which could gap or 
partially gap the semimetal.

• The quantum phase transition mechanism here for topological 
semimetals is different from the BF bound mechanism for many 
holographic quantum phase transitions, e.g. holographic 
superconductors, metal-insulator phase transitions, etc..



IV  

• Topological invariants for weakly coupled topological systems: 
distinguish different topology of the quantum wave function (or 
Hamiltonian) in the momentum space, preserved under 
homeomorphisms; intrinsic property of the band structure; changes 
under topological phase transitions
• A simple example for a topological invariant of weakly coupled 

topological systems: Berry phase

Summed over all 
occupied states



IV  

• Equivalent expression using Green functions (K. Ishikawa and T. Matsuyama,1986)

• Could be defined for interacting systems, however, requires integral in the        
direction
• Topological invariants for interacting systems: the topological Hamiltonian 

method (Z. Wang and S.C. Zhang, 2012,2013):
The zero frequency Green function contains all topological information. 
Topological Hamiltonian:
Topological Green function:
Connecting two Green functions:



IV  

• Topological Hamiltonian method:
• Topological information contained in
• The topological Hamiltonian                                     : an effective 

Hamiltonian, real eigenvalues: + unoccupied, - occupied; 
• Generalized topological invariant: 

replace the Bloch states in the weakly coupled formula by occupied 
eigenstates of 



IV  

• Topological invariant for holographic Weyl semimetals:
• A closed surface surrounding the Weyl node

• Trivial: C=0; Nontrivial: C=integer
• Fermion Green function: probe fermions on the Weyl semimetal background 

Berry curvature



IV  

• Topological invariant for pure AdS:

• Poles at k=0; Fermi point;
• Two occupied eigenstates: two chiralities, the same as the free theory;
• For each chirality, there is a topological number 1, -1, total 0;
• Two Weyl points annihilate at the Dirac point;



IV  

• Topological invariant for holographic Weyl semimetals:
• The                    limit:

• Semi-analytically, using near far matching method, we could proved that 
for very small M/b, the topological invariants are the same.

k1=0 k2=0



IV  

• For holographic nodal line semimetals
• Probe fermions



IV  

• Topological invariant for holographic nodal line semimetals:
• Multiple Fermi nodal lines at kz=0

Multiple Fermi nodal
lines from the same two
bands or different two

bands?



IV  

Spectrum constructed
from the zero
frequency Green
functions, which
reflects the topological
structure of the system.

Zeroes, poles from two
different sets of bands



IV  



IV  

• Topological invariant for holographic nodal line semimetals:
• Two types of topological invariants

Berry phase along a circle



IV  

• Topological invariant for holographic nodal line semimetals
• Discrete Berry phase

Berry phase=Sum
of all adjacent

phase differences



IV  

• Topological invariant for holographic nodal line semimetals:

• Results:
• Berry phase=0 for zeros of the zero frequency Green function;
• Berry phase =Pi for all poles from one set of the bands;
• Berry phase undetermined for all poles from the other set of bands;



IV Summary

• Existence of strongly coupled topological semimetal states;
• Transport properties confirm Weyl/nodal line semimetal phase;
• An intrinsic topological structure in bulk configuration;
• Nontrivial topological invariants from dual Green functions
• Transport predictions from holography:
Ø Substantial odd viscosity in the quantum critical region; new 

prediction for the physics of the quantum critical region of a Weyl 
semimetal from holography!

Ø New observational effect from gravitational anomaly!



Open questions

• A better understanding of the deeper organizational principles of strongly 
coupled topological states of matter and predict more types of strongly 
coupled topological states of matter
• Holographic framework as a possible method for classification of strongly 

interacting gapped as well as gapless topological states of matter
• Any new strongly coupled topological states of matter which even do not exist 

at weak coupling?
• Edge states (M. Ammon, et,al.,Phys. Rev. Lett. 118, 201601 (2017))
• Gapped, Topological superconductors, accidental semimetals?
• Prediction of new transport properties of strongly coupled topological states

of matter?



Thank you!


