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» the Planckian time scale

has been conjectured to bound “quantum dynamics” in
many-body systems with few-body interactions: e.g.

H = tijc;rcj + Jap0a0p + Km-jaac;rcj + Uijklc;fc}ckcl

» Example 1: bounds on decay rates hold in many
interacting QFTs [Sachdev; cond-mat/9810399]
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Motivating the Planckian Time Scale

» the heuristic derivation of this bound: starting with
AEAt Z h
and estimating that for a local operator
AE ~ kT,

we obtain

» but rigorously, At is (as far as I know) always related to
dephasing of the many-body wave function...



Introduction to Planckian Bounds

Resistivity of Strange Metals

» Example 2: bound on the transport time in the resistivity
in strange metals? [Zaanen (2004)]
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[Bruin, Sakai, Perry, Mackenzie (2013)]
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Viscosity and Diffusion Bounds

» Example 3: viscosity [Kovtun, Son, Starinets; hep-th/0405231]
h
s '
S 4 ]{iB
» compatible with existing experiments [Adams et al; 1205.5180]
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» Example 4: diffusion [Hartnoll; 1405.3651]
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Quantum Many-Body Chaos

» Example 5: the “chaos bound” on out-of-time-ordered
correlation functions (OTOCs): if

(A(t)B(O)A(t) B(0)) o 1 — %em

where the Lyapunov rate [Maldacena, Shenker, Stanford; 1503.01409]
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Quantum Many-Body Chaos

>

Example 5: the “chaos bound” on out-of-time-ordered
correlation functions (OTOCs): if

I
(A(t)B(0)A(t)B(0)) oc 1 — Ne)‘

where the Lyapunov rate [Maldacena, Shenker, Stanford; 1503.01409]

2 kT
< T

for now: OTOCs are inspired by

’ Ox;(t)
9z;(0)

ALt

’Ne

in a classical chaotic system
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» all 5 Planckian bounds, as stated, have counterexamples:
» 1 (decay rates), 2 (resistivity): disordered Fermi gas

1
Im (Efermi0n<p7w — O)) = 7__ X TO (T — 0)
imp

T X1 (T 0)

pP=—7
Ne*Timp

» 3 (viscosity): higher-derivative AdS/CFT
[Brigante et al; 0712.0805]

» 4 (diffusion): inhomogeneity [Lucas, Steinberg; 1608.03286]
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Counterexamples

» all 5 Planckian bounds, as stated, have counterexamples:
» 1 (decay rates), 2 (resistivity): disordered Fermi gas

1
Im (Efermion<p7w — O)) = 7__ X TO (T — 0)
imp

m

= T (T'—>0
r ne2Timp > ( )
» 3 (viscosity): higher-derivative AdS/CFT

[Brigante et al; 0712.0805]

» 4 (diffusion): inhomogeneity [Lucas, Steinberg; 1608.03286]
2 I . .
D <v*——, (in relevant theories)
kT

and D can be arbitrarily small
» 5 (OTOC growth): 141 dimensional free fermion

{c"(x,1),¢(0,0)} ~ &(z — 1)
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A New Conjecture

v

decay rate and OTOC bounds are not applicable in a
non-interacting system? =—> simple fix?

v

this talk presents a new conjecture:

if 7 is the time scale over which a “simple”
operator becomes “complicated”, then

L

~ kgT

v

I will precisely define “simple”, but will not improve 2> to >

v

all prior counterexamples now appear consistent
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Simple Operators and Chaos

A First Definition of Operator Size

v

let’s begin by considering a system of N spin—%s. the space
of Hermitian operators is

x z z T T z__Z z
1, oy, oy, of, ... oN, 0109, ... 0{05---0N

v

a first definition of operator size is

a1 o2 o Om]
Slojtop?--oim] =m

v

pick some O(1) R. operator O is simple <= S[O] < R.
problem: under time evolution:

v

O(t) — ethOe—th

does not depend on temperature T'!
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A Better Definition of Operator Size

» let’s equip the space of (Hermitian) operators with an
infinite temperature (7 = co) inner product:

(A|B) = 27 Ntr(ATB).
> define size S as a “superoperator”:

ZZ([U?,AH[U?,B])-

» with the T' = oo inner product:

(1[S[1) =0, (o7|SloT) =1, (030305|S|oj030%) =3,

(A|S|B) =

OO |

» sum of OTOCs gives us average size: (A(t)|S|A(t))
[Roberts, Stanford, Streicher; 1802.02633]
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Simple Operators and Chaos
Integrating Out the Complicated Operators

» time evolution of an operator:

d .
S14) = filH, 4]) = £]4).

» define p: a projector onto simple operators:

1 .
]J|0’i1"~0ij)=@(R+§—j) |0'i1“'0'i]-)

» invoke memory matrix formalism: if w, is a pole of
oap(w) = [X(M + N —iwx)"'x]as
Map = i(AlpLa(aLq —iw)~ aLp| B),
Nap = (AlpLp|B), xap = (Alp|B)

then |Im(w,)|~! is a lifetime of a simple operator



Simple Operators and Chaos

Understanding the Memory Matrix

Gap(w) = [x(M + N —iwx)"'x]ap
» M, p is positive semidefinite: contains “dissipation” —
the decay of simple operators into complicated operators
» Nup is antisymmetric: “dissipationless” — rotation of
simple operators into each other
» xap is generally a thermodynamic scale factor (but right
now is the identity)

simple

7?7 < o] B > Nyl ——— 77
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Estimating a Bound on Decay Times

» assume Hamiltonian H is k-local:
— Jaga af o arog oar | SOk
H=J" o]+ Jij op0; +---+ Ji1~--ik o3 oy,

» constrain M and N:
. , -
(B |L|AR)| < M) x{ 1 |R'—R|<k

Tk 0 otherwise

where 7, is a “Lieb-Robinson” time (o J’s)
sizes:

, N~ Rk R—k R—2k+1to R—k
R—k+1toR

[e=]
[e=]
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Simple Operators and Chaos

Estimating a Bound on Decay Times

» assume Hamiltonian H is k-local:
_ j0_ af_a B | . apap a1 Qg
H=J" o]+ Jij op0; +---+ Ji1~-~z‘k o3 oy,

» constrain M and N:

|(Br|£|AR)| <

Tk 0 otherwise

min(R, R') " { 1 |R—R|<k

where 7, is a “Lieb-Robinson” time (o J’s)

: 0 0 sizes:
M=\ ... ¢ 9 ,N~| ... Ezk Rk R—2k+1to R—k
0 0 M® o _Ex & R—k+1toR
T T

> integrate out more operators: R — R — k. we estimate

2
pe-w < BF B

~ or2M(R)C Ty
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Simple Operators and Chaos

Bounding the Lyapunov Exponent

» if interaction (factor) graph of H is regular:
[Bentsen, Gu, Lucas; 1805.08215]

(A(D)ISIA(1)) < Coe'/™

where

» 7, bounds both growth and decay of operators

» in regular theories with “classical” operator dynamics:

11
N YY)

» SYK: [Roberts, Stanford, Streicher; 1802.02633]
» random unitary circuit: [Nahum, Vijay, Haah; 1705.08975]
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Simple Operators and Chaos

Finite Temperature

» finite 7" corresponds to choosing (e.g.)

(A|B) = tr[\/pAt \/pB], p=z"te P

» S admits a complete orthonormal set of eigenvectors.
if S|A) = s|A) with s < R, A is simple
> of, Ufaj , etc., are largely made of simple operators

» if |s) is the eigenbasis of S, we write
= Z as(t)|s
S

our conjecture is that if |A(0)) = |so) (so < R):

SlaP ze 45
s<R
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» probe chaos using a sum of OTOCs:
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» probe chaos using a sum of OTOCs:

(A@)IS]A(1) ZZ i A@)lleg', AD))

a=11=1
2nkgT
=Y slat)F < ceMt, oy < TP

S
» we can also apply the chaos bound term by term
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Simple Operators and Chaos

Chaos

» probe chaos using a sum of OTOCs:

(A@)IS]A(1) ZE i A@)lleg', AD))

alzl

2n kT
=Y sla ) < o,y < T
S
» we can also apply the chaos bound term by term
d
FAMISIA®) ZZ [o%, A(8)] [0, A(t)]) + exror)

a=11i=1
(error terms ~ max;[(A(t)B|A(t)B) — (A|A)(B|B)])
» for local operators, Y error ~ N. postulating that error
~ NY for operator |A) of size < R/6:

(A@®)IplA()) >

so simple operator lifetime > 1/7T

1
fi 11 —
or all t < ST

| =
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Free Theories

» define size of AT = A in a theory of fermions as
N

(A18]4) =Y ([ei, All[es, A])

i=1
» in a free theory, the current operator is bilinear:
J = JijCICj

» at any temperature T

d
H=hyele; = S (@ISI1) =0
T
i €463 C;Cﬁ
Wiy €11, V \ /v
CICZ \.‘_ CSCS

Ci1C3

» this resolves all free fermion objections to Planckian bounds
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arise in heterogeneously connected systems: e.g.
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Simple Operators and Chaos

Heterogeneous Graphs

» a subtler counterexample to the chaos (OTOC) bound may
arise in heterogeneously connected systems: e.g.

R2 Z Z ngUAUBU

A,B=1i=1

R R
WlthlogN%oo,N—)OasN%oo.

» random unitary circuit on this (hyper)graph:
[Bentsen, Gu, Lucas; 1805.08215]

(AW BIAD.B) 1 o o

(AlA)(B|B) 2
(A(t)|]A) ~1 whent < N°

if A and B are a generic pair of local operators
» does this happen with fixed H at finite 177
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Dissipationless Time Scales

» now we return to transport bounds:

0= XJJTtr- T 2
XJJTtr r kT

» unfortunately, 7, is not physical.
» e.g., Drude theory of magnetotransport

2

ne T0
Oxx = Ttr, Ttr = .
m 14 (wem)?
. . e
7o = momentum relaxation time, w.,= —B
b
m

Ty can be anything as w. — 0 and 79 — 00!

» if we write D = v%7qig, the same comments also apply to
Taiff in many disordered systems
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Disorder-Driven Metal-Insulator Transitions

» in a conventional disordered metal, 7, is the decay rate of
a specific fermion bilinear Jijclcj, and is finite at T = 0:

ie. t
C4C3 W CgC6

fe
SN oSN e e L
T c§C3 W

ce i
142 cles

» Anderson localization: 7, = 0 without dissipation:

8103_’ Cj;C:s
Wi
CiC2 5402 Ter = 0
T T i
—CyC2 \ —C1C2
70163 7()];(?3

(this argument is correct up to exponentially small
corrections — but 7, = 0 is exact)
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Revisiting Transport Bounds

More on Localization

» eigenstates of free/interacting localized insulators are
robust to local perturbations: [Serbyn, Papi¢, Abanin; 1305.5554]

H=Hy+ \V, ||a)\|06>)\|| < 00

» this constrains the form of («a|V|3) at A = 0:

(aV]B) = (Ep — Ea)(alOA|B)  (a # D).

» since J is local and (a|J]a) = 0, we conclude |.J) contains
no null vector of £. hence

(J(L — iw) L) = 0.

as expected, there is no transport in this localized phase
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Revisiting Transport Bounds

Memory Matrix at the Insulating Transition

» in the memory matrix formalism:

o —Lyx L, J)
M+N=| L;x & 0 , | X)
ﬁ} 0 My + No other simple

the disorder-driven insulator happens as dg — 0
» compare to magnetotransport: if |P;) is momentum
1
=  —Ww, P,
M+ N « ( 7o 1 ¢ ) ) ’ -T)
We |Py)

70

Ter ST (weTp)?

» in both cases, 7, — 0 due to dissipationless modes — no
problem with Planckian bounds
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When Might Planckian Transport Bounds Work?

» with an (effective) Hamiltonian of the form
Hztfﬁc c]—i-U]klc feper 4+
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Revisiting Transport Bounds

When Might Planckian Transport Bounds Work?

» with an (effective) Hamiltonian of the form
Hztfﬁc c]—i-U]klc feper 4+

a cartoon for the time evolution of cJ{cl:

2 : 4
o teley e > t2chey -oeeeee > t3cley -meeeee > ttel e
B \‘A
T t 6 Srra ot 5.1
CiC2 t7UCEC£C3C5 <---- t Ucécgc;;cl< ----- t°Uciclesey «——— 17cgeg
\ fT('Q ‘:’. i o f"[ 3 .‘ " “ o
J2CaCaCeC3CACs === C7CECHC1C4CY

» our conjecture: only solid arrows occur at rate < kpT'/h
» a bound 7, > h/kpT suggests U > ¢eff:

C‘;CQ — UCJ{0;63(34_>l,r2(f$‘;(t";(tg(i;;(']('|_> U3(t;(:g(:;(:g(:3(:4(:1(:2
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