Planckian bound on the decay of simple operators

Andrew Lucas

Stanford Physics

Many-Body Quantum Chaos, Bad Metals, and Holography; NORDITA

August 20, 2018

- the Planckian time scale

$$
\tau \gtrsim \frac{\hbar}{k_{\mathrm{B}} T}
$$

has been conjectured to bound "quantum dynamics" in many-body systems with few-body interactions: e.g.

$$
H=t_{i j} c_{i}^{\dagger} c_{j}+J_{a b} \sigma_{a} \sigma_{b}+K_{a i j} \sigma_{a} c_{i}^{\dagger} c_{j}+U_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

- the Planckian time scale

$$
\tau \gtrsim \frac{\hbar}{k_{\mathrm{B}} T}
$$

has been conjectured to bound "quantum dynamics" in many-body systems with few-body interactions: e.g.

$$
H=t_{i j} c_{i}^{\dagger} c_{j}+J_{a b} \sigma_{a} \sigma_{b}+K_{a i j} \sigma_{a} c_{i}^{\dagger} c_{j}+U_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

- Example 1: bounds on decay rates hold in many interacting QFTs
[Sachdev; cond-mat/9810399]

$$
\left\langle c^{\dagger}(t) c(0)\right\rangle \sim \mathrm{e}^{-\gamma t}, \quad \gamma \lesssim \frac{k_{\mathrm{B}} T}{\hbar}
$$

Introduction to Planckian Bounds

- the heuristic derivation of this bound: starting with

$$
\Delta E \Delta t \gtrsim \hbar
$$

and estimating that for a local operator

$$
\Delta E \sim k_{\mathrm{B}} T
$$

we obtain

$$
\Delta t \gtrsim \frac{\hbar}{k_{\mathrm{B}} T}
$$

- the heuristic derivation of this bound: starting with

$$
\Delta E \Delta t \gtrsim \hbar
$$

and estimating that for a local operator

$$
\Delta E \sim k_{\mathrm{B}} T
$$

we obtain

$$
\Delta t \gtrsim \frac{\hbar}{k_{\mathrm{B}} T}
$$

- but rigorously, Δt is (as far as I know) always related to dephasing of the many-body wave function...

Introduction to Planckian Bounds

Resistivity of Strange Metals

- Example 2: bound on the transport time in the resistivity in strange metals?
[Zaanen (2004)]

$$
\rho=\frac{m}{n e^{2} \tau_{\mathrm{tr}}} \lesssim \frac{m}{n e^{2}} \frac{k_{\mathrm{B}} T}{\hbar}
$$

[Bruin, Sakai, Perry, Mackenzie (2013)]

Viscosity and Diffusion Bounds

- Example 3: viscosity
[Kovtun, Son, Starinets; hep-th/0405231]

$$
\frac{\eta}{s} \geq \frac{\hbar}{4 \pi k_{\mathrm{B}}}
$$

Introduction to Planckian Bounds

Viscosity and Diffusion Bounds

- Example 3: viscosity
[Kovtun, Son, Starinets; hep-th/0405231]

$$
\frac{\eta}{s} \geq \frac{\hbar}{4 \pi k_{\mathrm{B}}}
$$

- compatible with existing experiments [Adams et al; 1205.5180]

Introduction to Planckian Bounds

Viscosity and Diffusion Bounds

- Example 3: viscosity
[Kovtun, Son, Starinets; hep-th/0405231]

$$
\frac{\eta}{s} \geq \frac{\hbar}{4 \pi k_{\mathrm{B}}}
$$

- compatible with existing experiments [Adams et al; 1205.5180]

- Example 4: diffusion
[Hartnoll; 1405.3651]

$$
D \gtrsim v^{2} \frac{\hbar}{k_{\mathrm{B}} T} .
$$

Quantum Many-Body Chaos

- Example 5: the "chaos bound" on out-of-time-ordered correlation functions (OTOCs): if

$$
\langle A(t) B(0) A(t) B(0)\rangle \propto 1-\frac{1}{N} \mathrm{e}^{\lambda_{\mathrm{L}} t}
$$

where the Lyapunov rate [Maldacena, Shenker, Stanford; 1503.01409]

$$
\lambda_{\mathrm{L}} \leq \frac{2 \pi k_{\mathrm{B}} T}{\hbar}
$$

Quantum Many-Body Chaos

- Example 5: the "chaos bound" on out-of-time-ordered correlation functions (OTOCs): if

$$
\langle A(t) B(0) A(t) B(0)\rangle \propto 1-\frac{1}{N} \mathrm{e}^{\lambda_{\mathrm{L}} t}
$$

where the Lyapunov rate [Maldacena, Shenker, Stanford; 1503.01409]

$$
\lambda_{\mathrm{L}} \leq \frac{2 \pi k_{\mathrm{B}} T}{\hbar}
$$

- for now: OTOCs are inspired by

$$
\left|\frac{\partial x_{i}(t)}{\partial x_{j}(0)}\right| \sim \mathrm{e}^{\lambda_{\mathrm{L}} t}
$$

in a classical chaotic system

- all 5 Planckian bounds, as stated, have counterexamples:

Introduction to Planckian Bounds

Counterexamples

- all 5 Planckian bounds, as stated, have counterexamples:
- 1 (decay rates), 2 (resistivity): disordered Fermi gas

$$
\begin{gathered}
\operatorname{Im}\left(\Sigma_{\text {fermion }}(\mathbf{p}, \omega \rightarrow 0)\right)=\frac{1}{\tau_{\text {imp }}} \propto T^{0} \quad(T \rightarrow 0) \\
\rho=\frac{m}{n e^{2} \tau_{\mathrm{imp}}} \propto T^{0} \quad(T \rightarrow 0)
\end{gathered}
$$

Counterexamples

- all 5 Planckian bounds, as stated, have counterexamples:
- 1 (decay rates), 2 (resistivity): disordered Fermi gas

$$
\begin{gathered}
\operatorname{Im}\left(\Sigma_{\text {fermion }}(\mathbf{p}, \omega \rightarrow 0)\right)=\frac{1}{\tau_{\text {imp }}} \propto T^{0} \quad(T \rightarrow 0) \\
\rho=\frac{m}{n e^{2} \tau_{\mathrm{imp}}} \propto T^{0} \quad(T \rightarrow 0)
\end{gathered}
$$

- 3 (viscosity): higher-derivative AdS/CFT
[Brigante et al; 0712.0805]

Introduction to Planckian Bounds

Counterexamples

- all 5 Planckian bounds, as stated, have counterexamples:
- 1 (decay rates), 2 (resistivity): disordered Fermi gas

$$
\begin{gathered}
\operatorname{Im}\left(\Sigma_{\text {fermion }}(\mathbf{p}, \omega \rightarrow 0)\right)=\frac{1}{\tau_{\text {imp }}} \propto T^{0} \quad(T \rightarrow 0) \\
\rho=\frac{m}{n e^{2} \tau_{\mathrm{imp}}} \propto T^{0} \quad(T \rightarrow 0)
\end{gathered}
$$

- 3 (viscosity): higher-derivative AdS/CFT
[Brigante et al; 0712.0805]
- 4 (diffusion): inhomogeneity [Lucas, Steinberg; 1608.03286]

$$
D \lesssim v^{2} \frac{\hbar}{k_{\mathrm{B}} T}, \quad \text { (in relevant theories) }
$$

and D can be arbitrarily small

Introduction to Planckian Bounds

Counterexamples

- all 5 Planckian bounds, as stated, have counterexamples:
- 1 (decay rates), 2 (resistivity): disordered Fermi gas

$$
\begin{gathered}
\operatorname{Im}\left(\Sigma_{\text {fermion }}(\mathbf{p}, \omega \rightarrow 0)\right)=\frac{1}{\tau_{\text {imp }}} \propto T^{0} \quad(T \rightarrow 0) \\
\rho=\frac{m}{n e^{2} \tau_{\mathrm{imp}}} \propto T^{0} \quad(T \rightarrow 0)
\end{gathered}
$$

- 3 (viscosity): higher-derivative AdS/CFT
[Brigante et al; 0712.0805]
- 4 (diffusion): inhomogeneity [Lucas, Steinberg; 1608.03286]

$$
D \lesssim v^{2} \frac{\hbar}{k_{\mathrm{B}} T}, \quad \text { (in relevant theories) }
$$

and D can be arbitrarily small

- 5 (OTOC growth): $1+1$ dimensional free fermion

$$
\left\{c^{\dagger}(x, t), c(0,0)\right\} \sim \delta(x-t)
$$

- decay rate and OTOC bounds are not applicable in a non-interacting system? \Longrightarrow simple fix?

A New Conjecture

- decay rate and OTOC bounds are not applicable in a non-interacting system? \Longrightarrow simple fix?
- this talk presents a new conjecture:
if τ is the time scale over which a "simple" operator becomes "complicated", then

$$
\tau \gtrsim \frac{\hbar}{k_{\mathrm{B}} T}
$$

A New Conjecture

- decay rate and OTOC bounds are not applicable in a non-interacting system? \Longrightarrow simple fix?
- this talk presents a new conjecture:
if τ is the time scale over which a "simple" operator becomes "complicated", then

$$
\tau \gtrsim \frac{\hbar}{k_{\mathrm{B}} T}
$$

- I will precisely define "simple", but will not improve \gtrsim to \geq

A New Conjecture

- decay rate and OTOC bounds are not applicable in a non-interacting system? \Longrightarrow simple fix?
- this talk presents a new conjecture:
if τ is the time scale over which a "simple" operator becomes "complicated", then

$$
\tau \gtrsim \frac{\hbar}{k_{\mathrm{B}} T}
$$

- I will precisely define "simple", but will not improve \gtrsim to \geq
- all prior counterexamples now appear consistent

Simple Operators and Chaos

A First Definition of Operator Size

- let's begin by considering a system of N spin $-\frac{1}{2}$ s. the space of Hermitian operators is

$$
1, \sigma_{1}^{x}, \sigma_{1}^{y}, \quad \sigma_{1}^{z}, \ldots \sigma_{N}^{z}, \sigma_{1}^{x} \sigma_{2}^{x}, \ldots \sigma_{1}^{z} \sigma_{2}^{z} \cdots \sigma_{N}^{z}
$$

Simple Operators and Chaos

A First Definition of Operator Size

- let's begin by considering a system of N spin $-\frac{1}{2}$ s. the space of Hermitian operators is

$$
1, \sigma_{1}^{x}, \sigma_{1}^{y}, \quad \sigma_{1}^{z}, \ldots \sigma_{N}^{z}, \sigma_{1}^{x} \sigma_{2}^{x}, \ldots \sigma_{1}^{z} \sigma_{2}^{z} \cdots \sigma_{N}^{z}
$$

- a first definition of operator size is

$$
\mathcal{S}\left[\sigma_{i_{1}}^{\alpha_{1}} \sigma_{i_{2}}^{\alpha_{2}} \cdots \sigma_{i_{m}}^{\alpha_{m}}\right]=m
$$

A First Definition of Operator Size

- let's begin by considering a system of N spin $-\frac{1}{2}$ s. the space of Hermitian operators is

$$
1, \sigma_{1}^{x}, \sigma_{1}^{y}, \quad \sigma_{1}^{z}, \ldots \sigma_{N}^{z}, \sigma_{1}^{x} \sigma_{2}^{x}, \ldots \sigma_{1}^{z} \sigma_{2}^{z} \cdots \sigma_{N}^{z}
$$

- a first definition of operator size is

$$
\mathcal{S}\left[\sigma_{i_{1}}^{\alpha_{1}} \sigma_{i_{2}}^{\alpha_{2}} \cdots \sigma_{i_{m}}^{\alpha_{m}}\right]=m
$$

- pick some $\mathrm{O}(1) R$. operator \mathcal{O} is simple $\Longleftrightarrow \mathcal{S}[\mathcal{O}] \leq R$.

A First Definition of Operator Size

- let's begin by considering a system of N spin $-\frac{1}{2}$ s. the space of Hermitian operators is

$$
1, \sigma_{1}^{x}, \sigma_{1}^{y}, \quad \sigma_{1}^{z}, \ldots \sigma_{N}^{z}, \sigma_{1}^{x} \sigma_{2}^{x}, \ldots \sigma_{1}^{z} \sigma_{2}^{z} \cdots \sigma_{N}^{z}
$$

- a first definition of operator size is

$$
\mathcal{S}\left[\sigma_{i_{1}}^{\alpha_{1}} \sigma_{i_{2}}^{\alpha_{2}} \cdots \sigma_{i_{m}}^{\alpha_{m}}\right]=m
$$

- pick some $\mathrm{O}(1) R$. operator \mathcal{O} is simple $\Longleftrightarrow \mathcal{S}[\mathcal{O}] \leq R$.
- problem: under time evolution:

$$
\mathcal{O}(t)=\mathrm{e}^{\mathrm{i} H t} \mathcal{O} \mathrm{e}^{-\mathrm{i} H t}
$$

does not depend on temperature T !

Simple Operators and Chaos

A Better Definition of Operator Size

- let's equip the space of (Hermitian) operators with an infinite temperature $(T=\infty)$ inner product:

$$
(A \mid B)=2^{-N} \operatorname{tr}\left(A^{\dagger} B\right) .
$$

A Better Definition of Operator Size

- let's equip the space of (Hermitian) operators with an infinite temperature $(T=\infty)$ inner product:

$$
(A \mid B)=2^{-N} \operatorname{tr}\left(A^{\dagger} B\right)
$$

- define size \mathcal{S} as a "superoperator":

$$
(A|\mathcal{S}| B)=\frac{1}{8} \sum_{\alpha=1}^{3} \sum_{i=1}^{N}\left(\left[\sigma_{i}^{\alpha}, A\right] \mid\left[\sigma_{i}^{\alpha}, B\right]\right)
$$

A Better Definition of Operator Size

- let's equip the space of (Hermitian) operators with an infinite temperature $(T=\infty)$ inner product:

$$
(A \mid B)=2^{-N} \operatorname{tr}\left(A^{\dagger} B\right)
$$

- define size \mathcal{S} as a "superoperator":

$$
(A|\mathcal{S}| B)=\frac{1}{8} \sum_{\alpha=1}^{3} \sum_{i=1}^{N}\left(\left[\sigma_{i}^{\alpha}, A\right] \mid\left[\sigma_{i}^{\alpha}, B\right]\right)
$$

- with the $T=\infty$ inner product:

$$
(1|\mathcal{S}| 1)=0, \quad\left(\sigma_{1}^{x}|\mathcal{S}| \sigma_{1}^{x}\right)=1, \quad\left(\sigma_{2}^{y} \sigma_{3}^{z} \sigma_{4}^{z}|\mathcal{S}| \sigma_{2}^{y} \sigma_{3}^{z} \sigma_{4}^{z}\right)=3, \ldots
$$

A Better Definition of Operator Size

- let's equip the space of (Hermitian) operators with an infinite temperature $(T=\infty)$ inner product:

$$
(A \mid B)=2^{-N} \operatorname{tr}\left(A^{\dagger} B\right)
$$

- define size \mathcal{S} as a "superoperator":

$$
(A|\mathcal{S}| B)=\frac{1}{8} \sum_{\alpha=1}^{3} \sum_{i=1}^{N}\left(\left[\sigma_{i}^{\alpha}, A\right] \mid\left[\sigma_{i}^{\alpha}, B\right]\right)
$$

- with the $T=\infty$ inner product:

$$
(1|\mathcal{S}| 1)=0, \quad\left(\sigma_{1}^{x}|\mathcal{S}| \sigma_{1}^{x}\right)=1, \quad\left(\sigma_{2}^{y} \sigma_{3}^{z} \sigma_{4}^{z}|\mathcal{S}| \sigma_{2}^{y} \sigma_{3}^{z} \sigma_{4}^{z}\right)=3, \ldots
$$

- sum of OTOCs gives us average size: $(A(t)|\mathcal{S}| A(t))$

Simple Operators and Chaos

Integrating Out the Complicated Operators

- time evolution of an operator:

$$
\left.\left.\left.\left.\frac{\mathrm{d}}{\mathrm{~d} t} \right\rvert\, A\right)=\mid \mathrm{i}[H, A]\right)=\mathcal{L} \mid A\right)
$$

- time evolution of an operator:

$$
\left.\left.\left.\left.\frac{\mathrm{d}}{\mathrm{~d} t} \right\rvert\, A\right)=\mid \mathrm{i}[H, A]\right)=\mathcal{L} \mid A\right)
$$

- define \mathfrak{p} : a projector onto simple operators:

$$
\left.\left.\mathfrak{p} \mid \sigma_{i_{1}} \cdots \sigma_{i_{j}}\right) \left.=\Theta\left(R+\frac{1}{2}-j\right) \right\rvert\, \sigma_{i_{1}} \cdots \sigma_{i_{j}}\right)
$$

- time evolution of an operator:

$$
\left.\left.\left.\left.\frac{\mathrm{d}}{\mathrm{~d} t} \right\rvert\, A\right)=\mid \mathrm{i}[H, A]\right)=\mathcal{L} \mid A\right)
$$

- define \mathfrak{p} : a projector onto simple operators:

$$
\left.\left.\mathfrak{p} \mid \sigma_{i_{1}} \cdots \sigma_{i_{j}}\right) \left.=\Theta\left(R+\frac{1}{2}-j\right) \right\rvert\, \sigma_{i_{1}} \cdots \sigma_{i_{j}}\right)
$$

- invoke memory matrix formalism: if ω_{*} is a pole of

$$
\begin{gathered}
\hat{\sigma}_{A B}(\omega)=\left[\chi(M+N-\mathrm{i} \omega \chi)^{-1} \chi\right]_{A B} \\
M_{A B}=\mathrm{i}\left(A\left|\mathfrak{p} \mathcal{L q}(\mathfrak{q} \mathcal{L q}-\mathrm{i} \omega)^{-1} \mathfrak{q} \mathfrak{L} \mathfrak{p}\right| B\right), \\
N_{A B}=(A|\mathfrak{p} \mathcal{L p}| B), \quad \chi_{A B}=(A|\mathfrak{p}| B)
\end{gathered}
$$

then $\left|\operatorname{Im}\left(\omega_{*}\right)\right|^{-1}$ is a lifetime of a simple operator

$$
\hat{\sigma}_{A B}(\omega)=\left[\chi(M+N-\mathrm{i} \omega \chi)^{-1} \chi\right]_{A B}
$$

- $M_{A B}$ is positive semidefinite: contains "dissipation" the decay of simple operators into complicated operators
- $N_{A B}$ is antisymmetric: "dissipationless" - rotation of simple operators into each other
- $\chi_{A B}$ is generally a thermodynamic scale factor (but right now is the identity)

Simple Operators and Chaos

Estimating a Bound on Decay Times

- assume Hamiltonian H is k-local:

$$
H=J_{i}^{\alpha} \sigma_{i}^{\alpha}+J_{i j}^{\alpha \beta} \sigma_{i}^{\alpha} \sigma_{j}^{\beta}+\cdots+J_{i_{1} \cdots i_{k}}^{\alpha_{1} \cdots \alpha_{k}} \sigma_{i_{1}}^{\alpha_{1}} \cdots \sigma_{i_{k}}^{\alpha_{k}}
$$

Estimating a Bound on Decay Times

- assume Hamiltonian H is k-local:

$$
H=J_{i}^{\alpha} \sigma_{i}^{\alpha}+J_{i j}^{\alpha \beta} \sigma_{i}^{\alpha} \sigma_{j}^{\beta}+\cdots+J_{i_{1} \cdots i_{k}}^{\alpha_{1} \cdots \alpha_{k}} \sigma_{i_{1}}^{\alpha_{1}} \cdots \sigma_{i_{k}}^{\alpha_{k}}
$$

- constrain M and N :

$$
\left|\left(B_{R^{\prime}}|\mathcal{L}| A_{R}\right)\right| \leq \frac{\min \left(R, R^{\prime}\right)}{\tau_{*}} \times \begin{cases}1 & \left|R^{\prime}-R\right|<k \\ 0 & \text { otherwise }\end{cases}
$$

where τ_{*} is a "Lieb-Robinson" time ($\propto J$'s)

$$
M=\left(\begin{array}{ccc}
& \vdots & 0 \\
\cdots & 0 & 0 \\
0 & 0 & M^{(R)}
\end{array}\right), N \sim\left(\begin{array}{ccc}
& \vdots & 0 \\
& \frac{R-k}{\tau_{*}} & \frac{R-k}{\tau_{*}} \\
0 & -\frac{R-k}{\tau_{*}} & \frac{R}{\tau_{*}}
\end{array}\right) \begin{gathered}
\text { sizes: } \\
R-2 k+1 \text { to } R-k \\
R-k+1 \text { to } R
\end{gathered}
$$

Estimating a Bound on Decay Times

- assume Hamiltonian H is k-local:

$$
H=J_{i}^{\alpha} \sigma_{i}^{\alpha}+J_{i j}^{\alpha \beta} \sigma_{i}^{\alpha} \sigma_{j}^{\beta}+\cdots+J_{i_{1} \cdots i_{k}}^{\alpha_{1} \cdots \alpha_{k}} \sigma_{i_{1}}^{\alpha_{1}} \cdots \sigma_{i_{k}}^{\alpha_{k}}
$$

- constrain M and N :

$$
\left|\left(B_{R^{\prime}}|\mathcal{L}| A_{R}\right)\right| \leq \frac{\min \left(R, R^{\prime}\right)}{\tau_{*}} \times \begin{cases}1 & \left|R^{\prime}-R\right|<k \\ 0 & \text { otherwise }\end{cases}
$$

where τ_{*} is a "Lieb-Robinson" time ($\propto J$'s)
$M=\left(\begin{array}{ccc} & \vdots & 0 \\ \cdots & 0 & 0 \\ 0 & 0 & M^{(R)}\end{array}\right), N \sim\left(\begin{array}{ccc} & \vdots & 0 \\ & \frac{R-k}{\tau_{*}} & \frac{R-k}{\tau_{*}} \\ 0 & -\frac{R-k}{\tau_{*}} & \frac{R}{\tau_{*}}\end{array}\right) \begin{gathered}\text { sizes: } \\ R-2 k+1 \text { to } R-k \\ R-k+1 \text { to } R\end{gathered}$

- integrate out more operators: $R \rightarrow R-k$. we estimate

$$
M^{(R-k)} \lesssim \frac{(R-k)^{2}}{\tau_{*}^{2} M^{(R)}}, \quad \Longrightarrow \quad M^{(R)} \lesssim \frac{R}{\tau_{*}}
$$

Simple Operators and Chaos

- if interaction (factor) graph of H is regular:
[Bentsen, Gu, Lucas; 1805.08215]

$$
(A(t)|\mathcal{S}| A(t)) \leq C_{0} \mathrm{e}^{t / \tau_{\mathrm{L}}}
$$

where

$$
\tau_{\mathrm{L}} \geq \frac{\tau_{*}}{2 k}
$$

Bounding the Lyapunov Exponent

- if interaction (factor) graph of H is regular:
[Bentsen, Gu, Lucas; 1805.08215]

$$
(A(t)|\mathcal{S}| A(t)) \leq C_{0} \mathrm{e}^{t / \tau_{\mathrm{L}}}
$$

where

$$
\tau_{\mathrm{L}} \geq \frac{\tau_{*}}{2 k}
$$

- τ_{*} bounds both growth and decay of operators

Bounding the Lyapunov Exponent

- if interaction (factor) graph of H is regular:
[Bentsen, Gu, Lucas; 1805.08215]

$$
(A(t)|\mathcal{S}| A(t)) \leq C_{0} \mathrm{e}^{t / \tau_{\mathrm{L}}}
$$

where

$$
\tau_{\mathrm{L}} \geq \frac{\tau_{*}}{2 k}
$$

- τ_{*} bounds both growth and decay of operators
- in regular theories with "classical" operator dynamics:

$$
\tau_{\mathrm{L}} \geq \frac{1}{k-1} \frac{1}{M^{(1)}}
$$

- SYK:
- random unitary circuit:
[Roberts, Stanford, Streicher; 1802.02633]
[Nahum, Vijay, Haah; 1705.08975]

Simple Operators and Chaos

Finite Temperature

- finite T corresponds to choosing (e.g.)

$$
(A \mid B)=\operatorname{tr}\left[\sqrt{\rho} A^{\dagger} \sqrt{\rho} B\right], \quad \rho=Z^{-1} \mathrm{e}^{-\beta H}
$$

Finite Temperature

- finite T corresponds to choosing (e.g.)

$$
(A \mid B)=\operatorname{tr}\left[\sqrt{\rho} A^{\dagger} \sqrt{\rho} B\right], \quad \rho=Z^{-1} \mathrm{e}^{-\beta H}
$$

- \mathcal{S} admits a complete orthonormal set of eigenvectors. if $\mathcal{S} \mid A)=s \mid A$) with $s \leq R, A$ is simple

Finite Temperature

- finite T corresponds to choosing (e.g.)

$$
(A \mid B)=\operatorname{tr}\left[\sqrt{\rho} A^{\dagger} \sqrt{\rho} B\right], \quad \rho=Z^{-1} \mathrm{e}^{-\beta H}
$$

- \mathcal{S} admits a complete orthonormal set of eigenvectors. if $\mathcal{S} \mid A)=s \mid A$) with $s \leq R, A$ is simple
- $\sigma_{1}^{x}, \sigma_{1}^{y} \sigma_{4}^{z}$, etc., are largely made of simple operators

Finite Temperature

- finite T corresponds to choosing (e.g.)

$$
(A \mid B)=\operatorname{tr}\left[\sqrt{\rho} A^{\dagger} \sqrt{\rho} B\right], \quad \rho=Z^{-1} \mathrm{e}^{-\beta H}
$$

- \mathcal{S} admits a complete orthonormal set of eigenvectors. if $\mathcal{S} \mid A)=s \mid A$) with $s \leq R, A$ is simple
- $\sigma_{1}^{x}, \sigma_{1}^{y} \sigma_{4}^{z}$, etc., are largely made of simple operators
- if $\mid s)$ is the eigenbasis of \mathcal{S}, we write

$$
\left.\mid A(t))=\sum_{s} a_{s}(t) \mid s\right)
$$

our conjecture is that if $\left.\mid A(0))=\mid s_{0}\right)\left(s_{0}<R\right)$:

$$
\sum_{s \leq R}\left|a_{s}(t)\right|^{2} \gtrsim \mathrm{e}^{-\gamma t}, \quad \gamma \lesssim \frac{k_{\mathrm{B}} T}{\hbar}
$$

Simple Operators and Chaos

Chaos

- probe chaos using a sum of OTOCs:

$$
\begin{aligned}
(A(t)|\mathcal{S}| A(t)) & =\frac{1}{8} \sum_{\alpha=1}^{3} \sum_{i=1}^{N}\left(\left[\sigma_{i}^{\alpha}, A(t)\right] \mid\left[\sigma_{i}^{\alpha}, A(t)\right]\right) \\
& =\sum_{s} s\left|a_{s}(t)\right|^{2} \leq C \mathrm{e}^{\lambda_{\mathrm{L}} t}, \quad \lambda_{\mathrm{L}} \leq \frac{2 \pi k_{\mathrm{B}} T}{\hbar} ?
\end{aligned}
$$

Chaos

- probe chaos using a sum of OTOCs:

$$
\begin{aligned}
(A(t)|\mathcal{S}| A(t)) & =\frac{1}{8} \sum_{\alpha=1}^{3} \sum_{i=1}^{N}\left(\left[\sigma_{i}^{\alpha}, A(t)\right] \mid\left[\sigma_{i}^{\alpha}, A(t)\right]\right) \\
& =\sum_{s} s\left|a_{s}(t)\right|^{2} \leq C \mathrm{e}^{\lambda_{\mathrm{L}} t}, \quad \lambda_{\mathrm{L}} \leq \frac{2 \pi k_{\mathrm{B}} T}{\hbar} ?
\end{aligned}
$$

- we can also apply the chaos bound term by term

$$
\begin{aligned}
& \quad \frac{\mathrm{d}}{\mathrm{~d} t}(A(t)|\mathcal{S}| A(t)) \leq \frac{\pi T}{4} \sum_{\alpha=1}^{3} \sum_{i=1}^{N}\left(\left(\left[\sigma_{i}^{\alpha}, A(t)\right] \mid\left[\sigma_{i}^{\alpha}, A(t)\right]\right)+\right.\text { error) } \\
& \left(\text { error terms } \sim \max _{t}[(A(t) B \mid A(t) B)-(A \mid A)(B \mid B)]\right)
\end{aligned}
$$

Chaos

- probe chaos using a sum of OTOCs:

$$
\begin{aligned}
(A(t)|\mathcal{S}| A(t)) & =\frac{1}{8} \sum_{\alpha=1}^{3} \sum_{i=1}^{N}\left(\left[\sigma_{i}^{\alpha}, A(t)\right] \mid\left[\sigma_{i}^{\alpha}, A(t)\right]\right) \\
& =\sum_{s} s\left|a_{s}(t)\right|^{2} \leq C \mathrm{e}^{\lambda_{\mathrm{L}} t}, \quad \lambda_{\mathrm{L}} \leq \frac{2 \pi k_{\mathrm{B}} T}{\hbar} ?
\end{aligned}
$$

- we can also apply the chaos bound term by term

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(A(t)|\mathcal{S}| A(t)) \leq \frac{\pi T}{4} \sum_{\alpha=1}^{3} \sum_{i=1}^{N}\left(\left(\left[\sigma_{i}^{\alpha}, A(t)\right] \mid\left[\sigma_{i}^{\alpha}, A(t)\right]\right)+\text { error }\right)
$$

(error terms $\left.\sim \max _{t}[(A(t) B \mid A(t) B)-(A \mid A)(B \mid B)]\right)$

- for local operators, \sum error $\sim N^{0}$. postulating that error $\sim N^{0}$ for operator $\mid A$) of size $\leq R / 6$:

$$
(A(t)|\mathfrak{p}| A(t))>\frac{1}{2}, \quad \text { for all } t \lesssim \frac{1}{T}
$$

so simple operator lifetime $\gtrsim 1 / T$

Simple Operators and Chaos

Free Theories

- define size of $A^{\dagger}=A$ in a theory of fermions as

$$
(A|\mathcal{S}| A)=\sum_{i=1}^{N}\left(\left[c_{i}, A\right] \mid\left[c_{i}, A\right]\right)
$$

Free Theories

- define size of $A^{\dagger}=A$ in a theory of fermions as

$$
(A|\mathcal{S}| A)=\sum_{i=1}^{N}\left(\left[c_{i}, A\right] \mid\left[c_{i}, A\right]\right)
$$

- in a free theory, the current operator is bilinear:

$$
J=J_{i j} c_{i}^{\dagger} c_{j}
$$

Free Theories

- define size of $A^{\dagger}=A$ in a theory of fermions as

$$
(A|\mathcal{S}| A)=\sum_{i=1}^{N}\left(\left[c_{i}, A\right] \mid\left[c_{i}, A\right]\right)
$$

- in a free theory, the current operator is bilinear:

$$
J=J_{i j} c_{i}^{\dagger} c_{j}
$$

- at any temperature T :

$$
H=h_{i j} c_{i}^{\dagger} c_{j} \quad \Longrightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} t}(J(t)|\mathcal{S}| J(t))=0
$$

Free Theories

- define size of $A^{\dagger}=A$ in a theory of fermions as

$$
(A|\mathcal{S}| A)=\sum_{i=1}^{N}\left(\left[c_{i}, A\right] \mid\left[c_{i}, A\right]\right)
$$

- in a free theory, the current operator is bilinear:

$$
J=J_{i j} c_{i}^{\dagger} c_{j}
$$

- at any temperature T :

$$
H=h_{i j} c_{i}^{\dagger} c_{j} \quad \Longrightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} t}(J(t)|\mathcal{S}| J(t))=0
$$

- this resolves all free fermion objections to Planckian bounds

Heterogeneous Graphs

- a subtler counterexample to the chaos (OTOC) bound may arise in heterogeneously connected systems: e.g.

$$
H=\frac{1}{R^{2}} \sum_{A, B=1}^{R} \sum_{i=1}^{N} J_{A B i}^{\alpha \beta \gamma} \sigma_{A}^{\alpha} \sigma_{B}^{\beta} \sigma_{i}^{\gamma}
$$

with $\frac{R}{\log N} \rightarrow \infty, \frac{R}{N} \rightarrow 0$ as $N \rightarrow \infty$.

Heterogeneous Graphs

- a subtler counterexample to the chaos (OTOC) bound may arise in heterogeneously connected systems: e.g.

$$
H=\frac{1}{R^{2}} \sum_{A, B=1}^{R} \sum_{i=1}^{N} J_{A B i}^{\alpha \beta \gamma} \sigma_{A}^{\alpha} \sigma_{B}^{\beta} \sigma_{i}^{\gamma}
$$

with $\frac{R}{\log N} \rightarrow \infty, \frac{R}{N} \rightarrow 0$ as $N \rightarrow \infty$.

- random unitary circuit on this (hyper)graph:
[Bentsen, Gu, Lucas; 1805.08215]

$$
\begin{gathered}
\frac{([A(t), B] \mid[A(t), B])}{(A \mid A)(B \mid B)} \sim \frac{1}{2} \quad \text { when } t \gtrsim N^{0} \\
(A(t) \mid A) \sim 1 \quad \text { when } t \lesssim N^{0}
\end{gathered}
$$

if A and B are a generic pair of local operators

Heterogeneous Graphs

- a subtler counterexample to the chaos (OTOC) bound may arise in heterogeneously connected systems: e.g.

$$
H=\frac{1}{R^{2}} \sum_{A, B=1}^{R} \sum_{i=1}^{N} J_{A B i}^{\alpha \beta \gamma} \sigma_{A}^{\alpha} \sigma_{B}^{\beta} \sigma_{i}^{\gamma}
$$

with $\frac{R}{\log N} \rightarrow \infty, \frac{R}{N} \rightarrow 0$ as $N \rightarrow \infty$.

- random unitary circuit on this (hyper)graph:
[Bentsen, Gu, Lucas; 1805.08215]

$$
\begin{gathered}
\frac{([A(t), B] \mid[A(t), B])}{(A \mid A)(B \mid B)} \sim \frac{1}{2} \quad \text { when } t \gtrsim N^{0} \\
(A(t) \mid A) \sim 1 \quad \text { when } t \lesssim N^{0}
\end{gathered}
$$

if A and B are a generic pair of local operators

- does this happen with fixed H at finite T ?

Dissipationless Time Scales

- now we return to transport bounds:

$$
\sigma=\chi_{J J} \tau_{\operatorname{tr}} . \quad \tau_{\operatorname{tr}} \gtrsim \frac{\hbar}{k_{\mathrm{B}} T} ?
$$

Dissipationless Time Scales

- now we return to transport bounds:

$$
\sigma=\chi_{J J} \tau_{\operatorname{tr}} . \quad \tau_{\operatorname{tr}} \gtrsim \frac{\hbar}{k_{\mathrm{B}} T} ?
$$

- unfortunately, $\tau_{\text {tr }}$ is not physical.
- e.g., Drude theory of magnetotransport

$$
\begin{gathered}
\sigma_{x x}=\frac{n e^{2}}{m} \tau_{\operatorname{tr}}, \quad \tau_{\operatorname{tr}}=\frac{\tau_{0}}{1+\left(\omega_{\mathrm{c}} \tau_{0}\right)^{2}} \\
\tau_{0}=\text { momentum relaxation time }, \quad \omega_{\mathrm{c}}=\frac{e}{m} B
\end{gathered}
$$

$$
\tau_{\mathrm{tr}} \text { can be anything as } \omega_{\mathrm{c}} \rightarrow 0 \text { and } \tau_{0} \rightarrow \infty!
$$

Dissipationless Time Scales

- now we return to transport bounds:

$$
\sigma=\chi_{J J} \tau_{\operatorname{tr}} . \quad \tau_{\operatorname{tr}} \gtrsim \frac{\hbar}{k_{\mathrm{B}} T} ?
$$

- unfortunately, $\tau_{\text {tr }}$ is not physical.
- e.g., Drude theory of magnetotransport

$$
\sigma_{x x}=\frac{n e^{2}}{m} \tau_{\operatorname{tr}}, \quad \tau_{\operatorname{tr}}=\frac{\tau_{0}}{1+\left(\omega_{\mathrm{c}} \tau_{0}\right)^{2}}
$$

$$
\tau_{0}=\text { momentum relaxation time }, \quad \omega_{\mathrm{c}}=\frac{e}{m} B
$$

$$
\tau_{\mathrm{tr}} \text { can be anything as } \omega_{\mathrm{c}} \rightarrow 0 \text { and } \tau_{0} \rightarrow \infty!
$$

- if we write $D=v^{2} \tau_{\text {diff }}$, the same comments also apply to $\tau_{\text {diff }}$ in many disordered systems

Revisiting Transport Bounds

Disorder-Driven Metal-Insulator Transitions

- in a conventional disordered metal, $\tau_{\text {tr }}$ is the decay rate of a specific fermion bilinear $J_{i j} c_{i}^{\dagger} c_{j}$, and is finite at $T=0$:

Disorder-Driven Metal-Insulator Transitions

- in a conventional disordered metal, $\tau_{\text {tr }}$ is the decay rate of a specific fermion bilinear $J_{i j} c_{i}^{\dagger} c_{j}$, and is finite at $T=0$:

- Anderson localization: $\tau_{\text {tr }}=0$ without dissipation:

(this argument is correct up to exponentially small corrections - but $\tau_{\operatorname{tr}}=0$ is exact)

More on Localization

- eigenstates of free/interacting localized insulators are robust to local perturbations: [Serbyn, Papić, Abanin; 1305.5554]

$$
H=H_{0}+\lambda V, \quad \| \partial_{\lambda}|\alpha\rangle_{\lambda} \|<\infty
$$

More on Localization

- eigenstates of free/interacting localized insulators are robust to local perturbations: [Serbyn, Papić, Abanin; 1305.5554]

$$
H=H_{0}+\lambda V, \quad \| \partial_{\lambda}|\alpha\rangle_{\lambda} \|<\infty
$$

- this constrains the form of $\langle\alpha| V|\beta\rangle$ at $\lambda=0$:

$$
\langle\alpha| V|\beta\rangle=\left(E_{\beta}-E_{\alpha}\right)\langle\alpha| \partial_{\lambda}|\beta\rangle \quad(\alpha \neq \beta)
$$

More on Localization

- eigenstates of free/interacting localized insulators are robust to local perturbations: [Serbyn, Papić, Abanin; 1305.5554]

$$
H=H_{0}+\lambda V, \quad \| \partial_{\lambda}|\alpha\rangle_{\lambda} \|<\infty
$$

- this constrains the form of $\langle\alpha| V|\beta\rangle$ at $\lambda=0$:

$$
\langle\alpha| V|\beta\rangle=\left(E_{\beta}-E_{\alpha}\right)\langle\alpha| \partial_{\lambda}|\beta\rangle \quad(\alpha \neq \beta)
$$

- since J is local and $\langle\alpha| J|\alpha\rangle=0$, we conclude $\mid J)$ contains no null vector of \mathcal{L}. hence

$$
\left(J\left|(\mathcal{L}-\mathrm{i} \omega)^{-1}\right| J\right)=0
$$

as expected, there is no transport in this localized phase

Revisiting Transport Bounds

Memory Matrix at the Insulating Transition

- in the memory matrix formalism:

$$
M+N=\left(\begin{array}{ccc}
\delta_{1} & -\mathcal{L}_{J X} & -\hat{\mathcal{L}}_{J} \\
\mathcal{L}_{J X} & \delta_{2} & 0 \\
\hat{\mathcal{L}}_{J}^{\top} & 0 & M_{0}+N_{0}
\end{array}\right), \quad \begin{array}{||}
\hline J) \\
\text { other simple }
\end{array}
$$

the disorder-driven insulator happens as $\delta_{2} \rightarrow 0$

Memory Matrix at the Insulating Transition

- in the memory matrix formalism:

$$
M+N=\left(\begin{array}{ccc}
\delta_{1} & -\mathcal{L}_{J X} & -\hat{\mathcal{L}}_{J} \\
\mathcal{L}_{J X} & \delta_{2} & 0 \\
\hat{\mathcal{L}}_{J}^{\top} & 0 & M_{0}+N_{0}
\end{array}\right), \quad \begin{array}{||}
\hline \text { other simple }
\end{array}
$$

the disorder-driven insulator happens as $\delta_{2} \rightarrow 0$

- compare to magnetotransport: if $\left.\mid P_{i}\right)$ is momentum

$$
\begin{aligned}
M+N \propto\left(\begin{array}{cc}
\frac{1}{\tau_{0}} & -\omega_{\mathrm{c}} \\
\omega_{\mathrm{c}} & \frac{1}{\tau_{0}}
\end{array}\right), & \left.\mid P_{x}\right) \\
\tau_{\operatorname{tr}} & \propto \frac{\left.P_{y}\right)}{1+\left(\omega_{\mathrm{c}} \tau_{0}\right)^{2}}
\end{aligned}
$$

Memory Matrix at the Insulating Transition

- in the memory matrix formalism:

$$
M+N=\left(\begin{array}{ccc}
\delta_{1} & -\mathcal{L}_{J X} & -\hat{\mathcal{L}}_{J} \\
\mathcal{L}_{J X} & \delta_{2} & 0 \\
\hat{\mathcal{L}}_{J}^{\top} & 0 & M_{0}+N_{0}
\end{array}\right), \quad \begin{array}{||}
\hline \text { other simple }
\end{array}
$$

the disorder-driven insulator happens as $\delta_{2} \rightarrow 0$

- compare to magnetotransport: if $\left.\mid P_{i}\right)$ is momentum

$$
\begin{aligned}
& M+N \propto\left(\begin{array}{cc}
\frac{1}{\tau_{0}} & -\omega_{\mathrm{c}} \\
\omega_{\mathrm{c}} & \frac{1}{\tau_{0}}
\end{array}\right),\left.\mid P_{x}\right) \\
& \tau_{\operatorname{tr}} \propto \frac{\left.P_{y}\right)}{1+\left(\omega_{\mathrm{c}} \tau_{0}\right)^{2}}
\end{aligned}
$$

- in both cases, $\tau_{\text {tr }} \rightarrow 0$ due to dissipationless modes - no problem with Planckian bounds
- with an (effective) Hamiltonian of the form

$$
H=t_{i j}^{\mathrm{eff}} c_{i}^{\dagger} c_{j}+U_{i j k l}^{\mathrm{eff}} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}+\cdots
$$

a cartoon for the time evolution of $c_{1}^{\dagger} c_{1}$:

When Might Planckian Transport Bounds Work?

- with an (effective) Hamiltonian of the form

$$
H=t_{i j}^{\mathrm{eff}} c_{i}^{\dagger} c_{j}+U_{i j k l}^{\mathrm{eff}} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}+\cdots
$$

a cartoon for the time evolution of $c_{1}^{\dagger} c_{1}$:

- our conjecture: only solid arrows occur at rate $\lesssim k_{\mathrm{B}} T / \hbar$

When Might Planckian Transport Bounds Work?

- with an (effective) Hamiltonian of the form

$$
H=t_{i j}^{\mathrm{eff}} c_{i}^{\dagger} c_{j}+U_{i j k l}^{\mathrm{eff}} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}+\cdots
$$

a cartoon for the time evolution of $c_{1}^{\dagger} c_{1}$:

- our conjecture: only solid arrows occur at rate $\lesssim k_{\mathrm{B}} T / \hbar$
- a bound $\tau_{\text {tr }} \gtrsim \hbar / k_{\mathrm{B}} T$ suggests $U^{\mathrm{eff}} \gg t^{\text {eff }}$:

$$
c_{1}^{\dagger} c_{2} \longrightarrow U c_{1}^{\dagger} c_{5}^{\dagger} c_{3} c_{4} \longrightarrow U^{2} c_{9}^{\dagger} c_{7}^{\dagger} c_{5}^{\dagger} c_{3} c_{4} c_{1} \longrightarrow U^{3} c_{8}^{\dagger} c_{6}^{\dagger} c_{7}^{\dagger} c_{5}^{\dagger} c_{3} c_{4} c_{1} c_{2}
$$

