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Introduction to Planckian Bounds 2

Quantum Dynamics at Finite Temperature

I the Planckian time scale

τ &
~
kBT

has been conjectured to bound “quantum dynamics” in
many-body systems with few-body interactions: e.g.

H = tijc
†
icj + Jabσaσb +Kaijσac

†
icj + Uijklc

†
ic
†
jckcl

I Example 1: bounds on decay rates hold in many
interacting QFTs [Sachdev; cond-mat/9810399]

〈c†(t)c(0)〉 ∼ e−γt, γ .
kBT

~
.
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Motivating the Planckian Time Scale

I the heuristic derivation of this bound: starting with

∆E∆t & ~

and estimating that for a local operator

∆E ∼ kBT,

we obtain

∆t &
~
kBT

I but rigorously, ∆t is (as far as I know) always related to
dephasing of the many-body wave function...
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Resistivity of Strange Metals

I Example 2: bound on the transport time in the resistivity
in strange metals? [Zaanen (2004)]

ρ =
m

ne2τtr
.

m

ne2

kBT

~

[Bruin, Sakai, Perry, Mackenzie (2013)]
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Viscosity and Diffusion Bounds

I Example 3: viscosity [Kovtun, Son, Starinets; hep-th/0405231]

η

s
≥ ~

4πkB
.

I compatible with existing experiments [Adams et al; 1205.5180]

I Example 4: diffusion [Hartnoll; 1405.3651]

D & v2 ~
kBT

.
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Quantum Many-Body Chaos

I Example 5: the “chaos bound” on out-of-time-ordered
correlation functions (OTOCs): if

〈A(t)B(0)A(t)B(0)〉 ∝ 1− 1

N
eλLt

where the Lyapunov rate [Maldacena, Shenker, Stanford; 1503.01409]

λL ≤
2πkBT

~

I for now: OTOCs are inspired by∣∣∣∣ ∂xi(t)∂xj(0)

∣∣∣∣ ∼ eλLt

in a classical chaotic system
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Counterexamples

I all 5 Planckian bounds, as stated, have counterexamples:

I 1 (decay rates), 2 (resistivity): disordered Fermi gas

Im (Σfermion(p, ω → 0)) =
1

τimp
∝ T 0 (T → 0)

ρ =
m

ne2τimp
∝ T 0 (T → 0)

I 3 (viscosity): higher-derivative AdS/CFT
[Brigante et al; 0712.0805]

I 4 (diffusion): inhomogeneity [Lucas, Steinberg; 1608.03286]

D . v2
~

kBT
, (in relevant theories)

and D can be arbitrarily small
I 5 (OTOC growth): 1+1 dimensional free fermion

{c†(x, t), c(0, 0)} ∼ δ(x− t)
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A New Conjecture

I decay rate and OTOC bounds are not applicable in a
non-interacting system? =⇒ simple fix?

I this talk presents a new conjecture:

if τ is the time scale over which a “simple”
operator becomes “complicated”, then

τ &
~
kBT

I I will precisely define “simple”, but will not improve & to ≥
I all prior counterexamples now appear consistent
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Simple Operators and Chaos 9

A First Definition of Operator Size

I let’s begin by considering a system of N spin-1
2s. the space

of Hermitian operators is

1, σx1 , σy1 , σz1 , . . . σzN , σx1σ
x
2 , . . . σz1σ

z
2 · · ·σzN

I a first definition of operator size is

S[σα1
i1
σα2
i2
· · ·σαmim ] = m

I pick some O(1) R. operator O is simple ⇐⇒ S[O] ≤ R.

I problem: under time evolution:

O(t) = eiHtOe−iHt

does not depend on temperature T !
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A Better Definition of Operator Size

I let’s equip the space of (Hermitian) operators with an
infinite temperature (T =∞) inner product:

(A|B) = 2−N tr(A†B).

I define size S as a “superoperator”:

(A|S|B) =
1

8

3∑
α=1

N∑
i=1

([σαi , A]|[σαi , B]).

I with the T =∞ inner product:

(1|S|1) = 0, (σx1 |S|σx1 ) = 1, (σy2σ
z
3σ

z
4 |S|σy2σz3σz4) = 3, . . .

I sum of OTOCs gives us average size: (A(t)|S|A(t))
[Roberts, Stanford, Streicher; 1802.02633]
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Integrating Out the Complicated Operators

I time evolution of an operator:

d

dt
|A) = |i[H,A]) = L|A).

I define p: a projector onto simple operators:

p|σi1 · · ·σij ) = Θ

(
R+

1

2
− j
)
|σi1 · · ·σij )

I invoke memory matrix formalism: if ω∗ is a pole of

σ̂AB(ω) = [χ(M +N − iωχ)−1χ]AB

MAB = i(A|pLq(qLq− iω)−1qLp|B),

NAB = (A|pLp|B), χAB = (A|p|B)

then |Im(ω∗)|−1 is a lifetime of a simple operator
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Understanding the Memory Matrix

σ̂AB(ω) = [χ(M +N − iωχ)−1χ]AB
I MAB is positive semidefinite: contains “dissipation” –

the decay of simple operators into complicated operators
I NAB is antisymmetric: “dissipationless” – rotation of

simple operators into each other
I χAB is generally a thermodynamic scale factor (but right

now is the identity)

simple

σx1

σy2σ
y
7 σz6σ

y
7

σx6
N

M
?? ??

????
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Estimating a Bound on Decay Times

I assume Hamiltonian H is k-local:

H = Jαi σ
α
i + Jαβij σ

α
i σ

β
j + · · ·+ Jα1···αk

i1···ik σα1
i1
· · ·σαkik

I constrain M and N :

|(BR′ |L|AR)| ≤ min(R,R′)

τ∗
×
{

1 |R′ −R| < k
0 otherwise

where τ∗ is a “Lieb-Robinson” time (∝ J ’s)

M =


... 0

· · · 0 0

0 0 M(R)

 , N ∼


... 0

· · · R−k
τ∗

R−k
τ∗

0 −R−k
τ∗

R
τ∗

 sizes:
R− 2k + 1 to R− k
R− k + 1 to R

I integrate out more operators: R→ R− k. we estimate

M (R−k) .
(R− k)2

τ2
∗M

(R)
, =⇒ M (R) .

R

τ∗
.
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Bounding the Lyapunov Exponent

I if interaction (factor) graph of H is regular:
[Bentsen, Gu, Lucas; 1805.08215]

(A(t)|S|A(t)) ≤ C0et/τL

where
τL ≥

τ∗
2k
.

I τ∗ bounds both growth and decay of operators

I in regular theories with “classical” operator dynamics:

τL ≥
1

k − 1

1

M (1)

I SYK: [Roberts, Stanford, Streicher; 1802.02633]

I random unitary circuit: [Nahum, Vijay, Haah; 1705.08975]
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Finite Temperature

I finite T corresponds to choosing (e.g.)

(A|B) = tr[
√
ρA†
√
ρB], ρ = Z−1e−βH

I S admits a complete orthonormal set of eigenvectors.
if S|A) = s|A) with s ≤ R, A is simple

I σx1 , σy1σ
z
4 , etc., are largely made of simple operators

I if |s) is the eigenbasis of S, we write

|A(t)) =
∑
s

as(t)|s).

our conjecture is that if |A(0)) = |s0) (s0 < R):∑
s≤R
|as(t)|2 & e−γt, γ .

kBT

~
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Chaos

I probe chaos using a sum of OTOCs:

(A(t)|S|A(t)) =
1

8

3∑
α=1

N∑
i=1

([σαi , A(t)]|[σαi , A(t)])

=
∑
s

s|as(t)|2 ≤ CeλLt, λL ≤
2πkBT

~
?

I we can also apply the chaos bound term by term

d

dt
(A(t)|S|A(t)) ≤ πT

4

3∑
α=1

N∑
i=1

(([σαi , A(t)]|[σαi , A(t)]) + error)

(error terms ∼ maxt[(A(t)B|A(t)B)− (A|A)(B|B)])
I for local operators,

∑
error ∼ N0. postulating that error

∼ N0 for operator |A) of size ≤ R/6:

(A(t)|p|A(t)) >
1

2
, for all t .

1

T

so simple operator lifetime & 1/T
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Free Theories

I define size of A† = A in a theory of fermions as

(A|S|A) =

N∑
i=1

([ci, A]|[ci, A])

I in a free theory, the current operator is bilinear:

J = Jijc
†
icj

I at any temperature T :

H = hijc
†
icj =⇒ d

dt
(J(t)|S|J(t)) = 0
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I this resolves all free fermion objections to Planckian bounds
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Heterogeneous Graphs

I a subtler counterexample to the chaos (OTOC) bound may
arise in heterogeneously connected systems: e.g.

H =
1

R2

R∑
A,B=1

N∑
i=1

JαβγABiσ
α
Aσ

β
Bσ

γ
i

with R
logN →∞, R

N → 0 as N →∞.

I random unitary circuit on this (hyper)graph:
[Bentsen, Gu, Lucas; 1805.08215]

([A(t), B]|[A(t), B])

(A|A)(B|B)
∼ 1

2
when t & N0

(A(t)|A) ∼ 1 when t . N0

if A and B are a generic pair of local operators

I does this happen with fixed H at finite T?
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Dissipationless Time Scales

I now we return to transport bounds:

σ = χJJτtr. τtr &
~
kBT

?

I unfortunately, τtr is not physical.
I e.g., Drude theory of magnetotransport

σxx =
ne2

m
τtr, τtr =

τ0
1 + (ωcτ0)2

.

τ0 = momentum relaxation time, ωc =
e

m
B

τtr can be anything as ωc → 0 and τ0 →∞!

I if we write D = v2τdiff , the same comments also apply to
τdiff in many disordered systems
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Disorder-Driven Metal-Insulator Transitions

I in a conventional disordered metal, τtr is the decay rate of
a specific fermion bilinear Jijc

†
icj , and is finite at T = 0:

c†
1c2

t2c†
7c4tc†

1c4 t3c†
1c4 t4c†

1c9

t5c†
6c9t5Uc†

6c
†
5c3c1t6Uc†

6c
†
2c3c1t7Uc†

6c
†
2c3c5

t7U2c†
6c

†
4c

†
2c3c4c5 t7U3c†

7c
†
5c

†
2c1c4c9

c†
1c2

c†
1c4

c†
1c3

c†
4c3

c†
8c3

c†
8c6!⇤ !⇤ !⇤

!⇤
!⇤ ⌧tr ⇠

1

!⇤

I Anderson localization: τtr = 0 without dissipation:
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⌧tr = 0

(this argument is correct up to exponentially small
corrections – but τtr = 0 is exact)
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More on Localization

I eigenstates of free/interacting localized insulators are
robust to local perturbations: [Serbyn, Papić, Abanin; 1305.5554]

H = H0 + λV, ‖∂λ|α〉λ‖ <∞

I this constrains the form of 〈α|V |β〉 at λ = 0:

〈α|V |β〉 = (Eβ − Eα)〈α|∂λ|β〉 (α 6= β).

I since J is local and 〈α|J |α〉 = 0, we conclude |J) contains
no null vector of L. hence

(J |(L − iω)−1|J) = 0.

as expected, there is no transport in this localized phase
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Memory Matrix at the Insulating Transition

I in the memory matrix formalism:

M +N =

 δ1 −LJX −L̂J
LJX δ2 0

L̂TJ 0 M0 +N0

 ,
|J)
|X)

other simple

the disorder-driven insulator happens as δ2 → 0

I compare to magnetotransport: if |Pi) is momentum

M +N ∝
( 1

τ0
−ωc

ωc
1
τ0

)
,

|Px)
|Py)

τtr ∝
τ0

1 + (ωcτ0)2

I in both cases, τtr → 0 due to dissipationless modes – no
problem with Planckian bounds
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When Might Planckian Transport Bounds Work?

I with an (effective) Hamiltonian of the form

H = teff
ij c
†
icj + U eff

ijklc
†
ic
†
jckcl + · · · ,

a cartoon for the time evolution of c†1c1:
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I our conjecture: only solid arrows occur at rate . kBT/~
I a bound τtr & ~/kBT suggests U eff � teff :
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